Update app.py
Browse files
app.py
CHANGED
@@ -151,19 +151,34 @@ if not HF_TOKEN:
|
|
151 |
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
152 |
|
153 |
# initialize_leaderboard_file()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
def initialize_leaderboard_file():
|
155 |
"""
|
156 |
Ensure the leaderboard file exists and has the correct headers.
|
157 |
"""
|
158 |
if not os.path.exists(LEADERBOARD_FILE):
|
159 |
pd.DataFrame(columns=[
|
160 |
-
"Model Name", "Overall Accuracy", "
|
161 |
-
"
|
162 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
163 |
elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
164 |
pd.DataFrame(columns=[
|
165 |
-
"Model Name", "Overall Accuracy", "
|
166 |
-
"
|
167 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
168 |
|
169 |
def clean_answer(answer):
|
@@ -174,6 +189,48 @@ def clean_answer(answer):
|
|
174 |
return clean[0].upper() if clean else None
|
175 |
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
def update_leaderboard(results):
|
178 |
"""
|
179 |
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
@@ -181,7 +238,6 @@ def update_leaderboard(results):
|
|
181 |
new_entry = {
|
182 |
"Model Name": results['model_name'],
|
183 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
184 |
-
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
185 |
"Correct Predictions": results['correct_predictions'],
|
186 |
"Total Questions": results['total_questions'],
|
187 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
@@ -207,7 +263,7 @@ def update_leaderboard(results):
|
|
207 |
api.upload_file(
|
208 |
path_or_fileobj=LEADERBOARD_FILE,
|
209 |
path_in_repo="leaderboard.csv",
|
210 |
-
repo_id="SondosMB/
|
211 |
repo_type="space",
|
212 |
token=token
|
213 |
)
|
@@ -218,17 +274,88 @@ def update_leaderboard(results):
|
|
218 |
|
219 |
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
def load_leaderboard():
|
222 |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
223 |
return pd.DataFrame({
|
224 |
"Model Name": [],
|
225 |
"Overall Accuracy": [],
|
226 |
-
"Valid Accuracy": [],
|
227 |
"Correct Predictions": [],
|
228 |
"Total Questions": [],
|
229 |
"Timestamp": [],
|
230 |
})
|
231 |
return pd.read_csv(LEADERBOARD_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
234 |
try:
|
@@ -248,9 +375,9 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
248 |
return "Prediction file not uploaded.", load_leaderboard()
|
249 |
|
250 |
try:
|
251 |
-
#load
|
252 |
predictions_df = pd.read_csv(prediction_file.name)
|
253 |
-
|
254 |
required_columns = ['question_id', 'predicted_answer']
|
255 |
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
256 |
if missing_columns:
|
@@ -266,15 +393,12 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
266 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
267 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
268 |
total_predictions = len(merged_df)
|
269 |
-
total_valid_predictions = len(valid_predictions)
|
270 |
|
271 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
272 |
-
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
273 |
|
274 |
results = {
|
275 |
'model_name': model_name if model_name else "Unknown Model",
|
276 |
'overall_accuracy': overall_accuracy,
|
277 |
-
'valid_accuracy': valid_accuracy,
|
278 |
'correct_predictions': correct_predictions,
|
279 |
'total_questions': total_predictions,
|
280 |
}
|
@@ -287,7 +411,6 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
287 |
|
288 |
except Exception as e:
|
289 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
290 |
-
|
291 |
initialize_leaderboard_file()
|
292 |
|
293 |
|
|
|
151 |
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
152 |
|
153 |
# initialize_leaderboard_file()
|
154 |
+
# def initialize_leaderboard_file():
|
155 |
+
# """
|
156 |
+
# Ensure the leaderboard file exists and has the correct headers.
|
157 |
+
# """
|
158 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
159 |
+
# pd.DataFrame(columns=[
|
160 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
161 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
162 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
163 |
+
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
164 |
+
# pd.DataFrame(columns=[
|
165 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
166 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
167 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
168 |
+
|
169 |
def initialize_leaderboard_file():
|
170 |
"""
|
171 |
Ensure the leaderboard file exists and has the correct headers.
|
172 |
"""
|
173 |
if not os.path.exists(LEADERBOARD_FILE):
|
174 |
pd.DataFrame(columns=[
|
175 |
+
"Model Name", "Overall Accuracy", "Correct Predictions",
|
176 |
+
"Total Questions", "Timestamp"
|
177 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
178 |
elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
179 |
pd.DataFrame(columns=[
|
180 |
+
"Model Name", "Overall Accuracy", "Correct Predictions",
|
181 |
+
"Total Questions", "Timestamp"
|
182 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
183 |
|
184 |
def clean_answer(answer):
|
|
|
189 |
return clean[0].upper() if clean else None
|
190 |
|
191 |
|
192 |
+
# def update_leaderboard(results):
|
193 |
+
# """
|
194 |
+
# Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
195 |
+
# """
|
196 |
+
# new_entry = {
|
197 |
+
# "Model Name": results['model_name'],
|
198 |
+
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
199 |
+
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
200 |
+
# "Correct Predictions": results['correct_predictions'],
|
201 |
+
# "Total Questions": results['total_questions'],
|
202 |
+
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
203 |
+
# }
|
204 |
+
|
205 |
+
# try:
|
206 |
+
# # Update the local leaderboard file
|
207 |
+
# new_entry_df = pd.DataFrame([new_entry])
|
208 |
+
# file_exists = os.path.exists(LEADERBOARD_FILE)
|
209 |
+
|
210 |
+
# new_entry_df.to_csv(
|
211 |
+
# LEADERBOARD_FILE,
|
212 |
+
# mode='a', # Append mode
|
213 |
+
# index=False,
|
214 |
+
# header=not file_exists # Write header only if the file is new
|
215 |
+
# )
|
216 |
+
# print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
|
217 |
+
|
218 |
+
# # Push the updated file to the Hugging Face repository using HTTP API
|
219 |
+
# api = HfApi()
|
220 |
+
# token = HfFolder.get_token()
|
221 |
+
|
222 |
+
# api.upload_file(
|
223 |
+
# path_or_fileobj=LEADERBOARD_FILE,
|
224 |
+
# path_in_repo="leaderboard.csv",
|
225 |
+
# repo_id="SondosMB/ss", # Your Space repository
|
226 |
+
# repo_type="space",
|
227 |
+
# token=token
|
228 |
+
# )
|
229 |
+
# print("Leaderboard changes pushed to Hugging Face repository.")
|
230 |
+
|
231 |
+
# except Exception as e:
|
232 |
+
# print(f"Error updating leaderboard file: {e}")
|
233 |
+
|
234 |
def update_leaderboard(results):
|
235 |
"""
|
236 |
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
|
|
238 |
new_entry = {
|
239 |
"Model Name": results['model_name'],
|
240 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
|
|
241 |
"Correct Predictions": results['correct_predictions'],
|
242 |
"Total Questions": results['total_questions'],
|
243 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
|
263 |
api.upload_file(
|
264 |
path_or_fileobj=LEADERBOARD_FILE,
|
265 |
path_in_repo="leaderboard.csv",
|
266 |
+
repo_id="SondosMB/Mobile-MMLU", # Your Space repository
|
267 |
repo_type="space",
|
268 |
token=token
|
269 |
)
|
|
|
274 |
|
275 |
|
276 |
|
277 |
+
|
278 |
+
# def load_leaderboard():
|
279 |
+
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
280 |
+
# return pd.DataFrame({
|
281 |
+
# "Model Name": [],
|
282 |
+
# "Overall Accuracy": [],
|
283 |
+
# "Valid Accuracy": [],
|
284 |
+
# "Correct Predictions": [],
|
285 |
+
# "Total Questions": [],
|
286 |
+
# "Timestamp": [],
|
287 |
+
# })
|
288 |
+
# return pd.read_csv(LEADERBOARD_FILE)
|
289 |
+
|
290 |
+
|
291 |
def load_leaderboard():
|
292 |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
293 |
return pd.DataFrame({
|
294 |
"Model Name": [],
|
295 |
"Overall Accuracy": [],
|
|
|
296 |
"Correct Predictions": [],
|
297 |
"Total Questions": [],
|
298 |
"Timestamp": [],
|
299 |
})
|
300 |
return pd.read_csv(LEADERBOARD_FILE)
|
301 |
+
|
302 |
+
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
303 |
+
# try:
|
304 |
+
# ground_truth_path = hf_hub_download(
|
305 |
+
# repo_id="SondosMB/ground-truth-dataset",
|
306 |
+
# filename="ground_truth.csv",
|
307 |
+
# repo_type="dataset",
|
308 |
+
# use_auth_token=True
|
309 |
+
# )
|
310 |
+
# ground_truth_df = pd.read_csv(ground_truth_path)
|
311 |
+
# except FileNotFoundError:
|
312 |
+
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
313 |
+
# except Exception as e:
|
314 |
+
# return f"Error loading ground truth: {e}", load_leaderboard()
|
315 |
+
|
316 |
+
# if not prediction_file:
|
317 |
+
# return "Prediction file not uploaded.", load_leaderboard()
|
318 |
+
|
319 |
+
# try:
|
320 |
+
# #load predition file
|
321 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
322 |
+
# # Validate required columns in prediction file
|
323 |
+
# required_columns = ['question_id', 'predicted_answer']
|
324 |
+
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
325 |
+
# if missing_columns:
|
326 |
+
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
327 |
+
# load_leaderboard())
|
328 |
+
|
329 |
+
# # Validate 'Answer' column in ground truth file
|
330 |
+
# if 'Answer' not in ground_truth_df.columns:
|
331 |
+
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
|
332 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
333 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
334 |
+
|
335 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
336 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
337 |
+
# total_predictions = len(merged_df)
|
338 |
+
# total_valid_predictions = len(valid_predictions)
|
339 |
+
|
340 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
341 |
+
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
342 |
+
|
343 |
+
# results = {
|
344 |
+
# 'model_name': model_name if model_name else "Unknown Model",
|
345 |
+
# 'overall_accuracy': overall_accuracy,
|
346 |
+
# 'valid_accuracy': valid_accuracy,
|
347 |
+
# 'correct_predictions': correct_predictions,
|
348 |
+
# 'total_questions': total_predictions,
|
349 |
+
# }
|
350 |
+
|
351 |
+
# if add_to_leaderboard:
|
352 |
+
# update_leaderboard(results)
|
353 |
+
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
354 |
+
# else:
|
355 |
+
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
356 |
+
|
357 |
+
# except Exception as e:
|
358 |
+
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
359 |
|
360 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
361 |
try:
|
|
|
375 |
return "Prediction file not uploaded.", load_leaderboard()
|
376 |
|
377 |
try:
|
378 |
+
#load prediction file
|
379 |
predictions_df = pd.read_csv(prediction_file.name)
|
380 |
+
# Validate required columns in prediction file
|
381 |
required_columns = ['question_id', 'predicted_answer']
|
382 |
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
383 |
if missing_columns:
|
|
|
393 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
394 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
395 |
total_predictions = len(merged_df)
|
|
|
396 |
|
397 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
|
|
398 |
|
399 |
results = {
|
400 |
'model_name': model_name if model_name else "Unknown Model",
|
401 |
'overall_accuracy': overall_accuracy,
|
|
|
402 |
'correct_predictions': correct_predictions,
|
403 |
'total_questions': total_predictions,
|
404 |
}
|
|
|
411 |
|
412 |
except Exception as e:
|
413 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
|
|
414 |
initialize_leaderboard_file()
|
415 |
|
416 |
|