Update app.py
Browse files
app.py
CHANGED
@@ -16,13 +16,148 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
16 |
if not HF_TOKEN:
|
17 |
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def initialize_leaderboard_file():
|
20 |
"""
|
21 |
Ensure the leaderboard file exists and has the correct headers.
|
22 |
"""
|
23 |
if not os.path.exists(LEADERBOARD_FILE):
|
24 |
pd.DataFrame(columns=[
|
25 |
-
|
26 |
"Correct Predictions", "Total Questions", "Timestamp"
|
27 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
28 |
elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
@@ -44,7 +179,7 @@ def update_leaderboard(results):
|
|
44 |
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
45 |
"""
|
46 |
new_entry = {
|
47 |
-
|
48 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
49 |
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
50 |
"Correct Predictions": results['correct_predictions'],
|
@@ -139,6 +274,9 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
139 |
results = {
|
140 |
'model_name': model_name if model_name else "Unknown Model",
|
141 |
'overall_accuracy': overall_accuracy,
|
|
|
|
|
|
|
142 |
}
|
143 |
|
144 |
if add_to_leaderboard:
|
@@ -152,6 +290,7 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
152 |
|
153 |
initialize_leaderboard_file()
|
154 |
|
|
|
155 |
# Function to set default mode
|
156 |
# Function to set default mode
|
157 |
import gradio as gr
|
|
|
16 |
if not HF_TOKEN:
|
17 |
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
|
18 |
|
19 |
+
# def initialize_leaderboard_file():
|
20 |
+
# """
|
21 |
+
# Ensure the leaderboard file exists and has the correct headers.
|
22 |
+
# """
|
23 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
24 |
+
# pd.DataFrame(columns=[
|
25 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
26 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
27 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
28 |
+
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
29 |
+
# pd.DataFrame(columns=[
|
30 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
31 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
32 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
33 |
+
|
34 |
+
# def clean_answer(answer):
|
35 |
+
# if pd.isna(answer):
|
36 |
+
# return None
|
37 |
+
# answer = str(answer)
|
38 |
+
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
39 |
+
# return clean[0].upper() if clean else None
|
40 |
+
|
41 |
+
|
42 |
+
# def update_leaderboard(results):
|
43 |
+
# """
|
44 |
+
# Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
45 |
+
# """
|
46 |
+
# new_entry = {
|
47 |
+
# "Model Name": results['model_name'],
|
48 |
+
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
49 |
+
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
50 |
+
# "Correct Predictions": results['correct_predictions'],
|
51 |
+
# "Total Questions": results['total_questions'],
|
52 |
+
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
53 |
+
# }
|
54 |
+
|
55 |
+
# try:
|
56 |
+
# # Update the local leaderboard file
|
57 |
+
# new_entry_df = pd.DataFrame([new_entry])
|
58 |
+
# file_exists = os.path.exists(LEADERBOARD_FILE)
|
59 |
+
|
60 |
+
# new_entry_df.to_csv(
|
61 |
+
# LEADERBOARD_FILE,
|
62 |
+
# mode='a', # Append mode
|
63 |
+
# index=False,
|
64 |
+
# header=not file_exists # Write header only if the file is new
|
65 |
+
# )
|
66 |
+
# print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
|
67 |
+
|
68 |
+
# # Push the updated file to the Hugging Face repository using HTTP API
|
69 |
+
# api = HfApi()
|
70 |
+
# token = HfFolder.get_token()
|
71 |
+
|
72 |
+
# api.upload_file(
|
73 |
+
# path_or_fileobj=LEADERBOARD_FILE,
|
74 |
+
# path_in_repo="leaderboard.csv",
|
75 |
+
# repo_id="SondosMB/ss", # Your Space repository
|
76 |
+
# repo_type="space",
|
77 |
+
# token=token
|
78 |
+
# )
|
79 |
+
# print("Leaderboard changes pushed to Hugging Face repository.")
|
80 |
+
|
81 |
+
# except Exception as e:
|
82 |
+
# print(f"Error updating leaderboard file: {e}")
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# def load_leaderboard():
|
87 |
+
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
88 |
+
# return pd.DataFrame({
|
89 |
+
# "Model Name": [],
|
90 |
+
# "Overall Accuracy": [],
|
91 |
+
# "Valid Accuracy": [],
|
92 |
+
# "Correct Predictions": [],
|
93 |
+
# "Total Questions": [],
|
94 |
+
# "Timestamp": [],
|
95 |
+
# })
|
96 |
+
# return pd.read_csv(LEADERBOARD_FILE)
|
97 |
+
|
98 |
+
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
99 |
+
# try:
|
100 |
+
# ground_truth_path = hf_hub_download(
|
101 |
+
# repo_id="SondosMB/ground-truth-dataset",
|
102 |
+
# filename="ground_truth.csv",
|
103 |
+
# repo_type="dataset",
|
104 |
+
# use_auth_token=True
|
105 |
+
# )
|
106 |
+
# ground_truth_df = pd.read_csv(ground_truth_path)
|
107 |
+
# except FileNotFoundError:
|
108 |
+
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
109 |
+
# except Exception as e:
|
110 |
+
# return f"Error loading ground truth: {e}", load_leaderboard()
|
111 |
+
|
112 |
+
# if not prediction_file:
|
113 |
+
# return "Prediction file not uploaded.", load_leaderboard()
|
114 |
+
|
115 |
+
# try:
|
116 |
+
# #load predition file
|
117 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
118 |
+
# # Validate required columns in prediction file
|
119 |
+
# required_columns = ['question_id', 'predicted_answer']
|
120 |
+
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
121 |
+
# if missing_columns:
|
122 |
+
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
123 |
+
# load_leaderboard())
|
124 |
+
|
125 |
+
# # Validate 'Answer' column in ground truth file
|
126 |
+
# if 'Answer' not in ground_truth_df.columns:
|
127 |
+
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
|
128 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
129 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
130 |
+
|
131 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
132 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
133 |
+
# total_predictions = len(merged_df)
|
134 |
+
# total_valid_predictions = len(valid_predictions)
|
135 |
+
|
136 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
137 |
+
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
138 |
+
|
139 |
+
# results = {
|
140 |
+
# 'model_name': model_name if model_name else "Unknown Model",
|
141 |
+
# 'overall_accuracy': overall_accuracy,
|
142 |
+
# }
|
143 |
+
|
144 |
+
# if add_to_leaderboard:
|
145 |
+
# update_leaderboard(results)
|
146 |
+
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
147 |
+
# else:
|
148 |
+
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
149 |
+
|
150 |
+
# except Exception as e:
|
151 |
+
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
152 |
+
|
153 |
+
# initialize_leaderboard_file()
|
154 |
def initialize_leaderboard_file():
|
155 |
"""
|
156 |
Ensure the leaderboard file exists and has the correct headers.
|
157 |
"""
|
158 |
if not os.path.exists(LEADERBOARD_FILE):
|
159 |
pd.DataFrame(columns=[
|
160 |
+
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
161 |
"Correct Predictions", "Total Questions", "Timestamp"
|
162 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
163 |
elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
|
|
179 |
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
180 |
"""
|
181 |
new_entry = {
|
182 |
+
"Model Name": results['model_name'],
|
183 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
184 |
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
185 |
"Correct Predictions": results['correct_predictions'],
|
|
|
274 |
results = {
|
275 |
'model_name': model_name if model_name else "Unknown Model",
|
276 |
'overall_accuracy': overall_accuracy,
|
277 |
+
'valid_accuracy': valid_accuracy,
|
278 |
+
'correct_predictions': correct_predictions,
|
279 |
+
'total_questions': total_predictions,
|
280 |
}
|
281 |
|
282 |
if add_to_leaderboard:
|
|
|
290 |
|
291 |
initialize_leaderboard_file()
|
292 |
|
293 |
+
|
294 |
# Function to set default mode
|
295 |
# Function to set default mode
|
296 |
import gradio as gr
|