File size: 11,239 Bytes
b66b45c
43b1393
2116a66
b66b45c
f8c68bd
 
b66b45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3cb72
b66b45c
 
 
 
 
 
 
ac6da60
b66b45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d4f9ed
2116a66
 
b66b45c
 
2116a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66b45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3cb72
41cbe95
b66b45c
 
fd3cb72
41cbe95
b66b45c
 
 
 
 
 
 
 
 
 
 
 
 
5d4f9ed
b66b45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d4f9ed
b66b45c
 
 
 
 
 
 
 
2ae2cbd
05e9cff
b66b45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabb9c4
b66b45c
 
 
 
 
 
 
 
fd3cb72
5d4f9ed
2ae2cbd
b66b45c
 
 
 
 
 
 
 
 
 
 
2ae2cbd
05e9cff
fd3cb72
b66b45c
 
 
 
 
 
 
 
 
 
68d5b48
 
b66b45c
68d5b48
b66b45c
 
8b884e6
b66b45c
c0cb430
b66b45c
5d4f9ed
68d5b48
8e0a53d
 
 
43b1393
5d4f9ed
b66b45c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Import Data Science Libraries
import gradio as gr
import os
import requests
import gdown
import zipfile
import pandas as pd
from pathlib import Path
from PIL import Image, UnidentifiedImageError
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
import itertools
import random

# Import visualization libraries
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import seaborn as sns

# Tensorflow Libraries
from tensorflow import keras
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.callbacks import Callback, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras import Model

from keras.layers import Dense, Flatten, Dropout, BatchNormalization

# System libraries
from pathlib import Path
import os.path

# Metrics
from sklearn.metrics import classification_report, confusion_matrix

sns.set(style='darkgrid')



# Seed Everything to reproduce results for future use cases
def seed_everything(seed=42):
    # Seed value for TensorFlow
    tf.random.set_seed(seed)

    # Seed value for NumPy
    np.random.seed(seed)

    # Seed value for Python's random library
    random.seed(seed)

    # Force TensorFlow to use single thread
    # Multiple threads are a potential source of non-reproducible results.
    session_conf = tf.compat.v1.ConfigProto(
        intra_op_parallelism_threads=1,
        inter_op_parallelism_threads=1
    )

    # Make sure that TensorFlow uses a deterministic operation wherever possible
    tf.compat.v1.set_random_seed(seed)

    sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
    tf.compat.v1.keras.backend.set_session(sess)

seed_everything()



# URL of the file you want to download
url = "https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/helper_functions.py"

# Send a GET request to the URL
response = requests.get(url)

# Check if the request was successful (status code 200)
if response.status_code == 200:
    # Save the content of the response (the file) to a local file
    with open("helper_functions.py", "wb") as f:
        f.write(response.content)
    print("File downloaded successfully!")
else:
    print("Failed to download file")


# Import series of helper functions for our notebook
from helper_functions import create_tensorboard_callback, plot_loss_curves, unzip_data, compare_historys, walk_through_dir, pred_and_plot

BATCH_SIZE = 32
TARGET_SIZE = (224, 224)

# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'

# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'

# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'

# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)

# Directory to extract files
extracted_path = 'extracted_files'

# Verify if the downloaded file is a ZIP file and extract it
try:
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(extracted_path)
    print("Extraction successful!")
except zipfile.BadZipFile:
    print("Error: The downloaded file is not a valid ZIP file.")

# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)

# Convert the extracted directory path to a pathlib.Path object
data_dir = Path(extracted_path)

# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
    level = root.replace(extracted_path, '').count(os.sep)
    indent = ' ' * 4 * (level)
    print(f"{indent}{os.path.basename(root)}/")
    subindent = ' ' * 4 * (level + 1)
    for f in files:
        print(f"{subindent}{f}")

# Function to convert the directory path to a DataFrame
def convert_path_to_df(dataset):
    image_dir = Path(dataset)

    # Get filepaths and labels
    filepaths = list(image_dir.glob(r'**/*.JPG')) + list(image_dir.glob(r'**/*.jpg')) + list(image_dir.glob(r'**/*.png')) + list(image_dir.glob(r'**/*.PNG'))

    labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths))

    filepaths = pd.Series(filepaths, name='Filepath').astype(str)
    labels = pd.Series(labels, name='Label')

    # Concatenate filepaths and labels
    image_df = pd.concat([filepaths, labels], axis=1)
    return image_df

# Path to the dataset directory
data_dir = Path('extracted_files/Pest_Dataset')
image_df = convert_path_to_df(data_dir)

# Check for corrupted images within the dataset
for img_p in data_dir.rglob("*.jpg"):
    try:
        img = Image.open(img_p)
    except UnidentifiedImageError:
        print(f"Corrupted image file: {img_p}")

# You can save the DataFrame to a CSV for further use
image_df.to_csv('image_dataset.csv', index=False)
print("DataFrame created and saved successfully!")

label_counts = image_df['Label'].value_counts()

plt.figure(figsize=(10, 6))
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
plt.xlabel('Label', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.xticks(rotation=45)
plt.show()

# Display 16 picture of the dataset with their labels
random_index = np.random.randint(0, len(image_df), 16)
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
                        subplot_kw={'xticks': [], 'yticks': []})

for i, ax in enumerate(axes.flat):
    ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
    ax.set_title(image_df.Label[random_index[i]])
plt.tight_layout()
plt.show()

# Function to return a random image path from a given directory
def random_sample(directory):
    images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
    return random.choice(images)

# Function to compute the Error Level Analysis (ELA) of an image
def compute_ela_cv(path, quality):
    temp_filename = 'temp.jpg'
    orig = cv2.imread(path)
    cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
    compressed = cv2.imread(temp_filename)
    ela_image = cv2.absdiff(orig, compressed)
    ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
    return ela_image

# View random sample from the dataset
p = random_sample('extracted_files/Pest_Dataset/beetle')
orig = cv2.imread(p)
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
init_val = 100
columns = 3
rows = 3

fig=plt.figure(figsize=(15, 10))
for i in range(1, columns*rows +1):
    quality=init_val - (i-1) * 8
    img = compute_ela_cv(path=p, quality=quality)
    if i == 1:
        img = orig.copy()
    ax = fig.add_subplot(rows, columns, i)
    ax.title.set_text(f'q: {quality}')
    plt.imshow(img)
plt.show()

# Separate in train and test data
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)

train_generator = ImageDataGenerator(
    preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
    validation_split=0.2
)

test_generator = ImageDataGenerator(
    preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
)

# Split the data into three categories.
train_images = train_generator.flow_from_dataframe(
    dataframe=train_df,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),
    color_mode='rgb',
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42,
    subset='training'
)

val_images = train_generator.flow_from_dataframe(
    dataframe=train_df,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),
    color_mode='rgb',
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42,
    subset='validation'
)

test_images = test_generator.flow_from_dataframe(
    dataframe=test_df,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),
    color_mode='rgb',
    class_mode='categorical',
    batch_size=32,
    shuffle=False
)

# Data Augmentation Step
augment = tf.keras.Sequential([
    tf.keras.layers.Resizing(224, 224),
    tf.keras.layers.Rescaling(1./255),
    tf.keras.layers.RandomFlip("horizontal"),
    tf.keras.layers.RandomRotation(0.1),
    tf.keras.layers.RandomZoom(0.1),
    tf.keras.layers.RandomContrast(0.1),
])

# Load the pretained model
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
    input_shape=(224, 224, 3),
    include_top=False,
    weights='imagenet',
    pooling='max'
)

pretrained_model.trainable = False

# Create checkpoint callback
checkpoint_path = "pests_cats_classification_model_checkpoint"
checkpoint_callback = ModelCheckpoint(checkpoint_path,
                                      save_weights_only=True,
                                      monitor="val_accuracy",
                                      save_best_only=True)

# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs
early_stopping = EarlyStopping(monitor = "val_loss", # watch the val loss metric
                               patience = 5,
                               restore_best_weights = True) # if val loss decreases for 3 epochs in a row, stop training

inputs = pretrained_model.input
x = augment(inputs)

# Add new classification layers
x = Flatten()(pretrained_model.output)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = BatchNormalization()(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)

outputs = Dense(12, activation='softmax')(x)

model = Model(inputs=inputs, outputs=outputs)

model.compile(
    optimizer=Adam(0.00001),
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

history = model.fit(
    train_images,
    steps_per_epoch=len(train_images),
    validation_data=val_images,
    validation_steps=len(val_images),
    epochs=60,  # Adjusted to 30 epochs
    callbacks=[
        early_stopping,
        create_tensorboard_callback("training_logs",
                                    "pests_cats_classification"),
        checkpoint_callback,
    ]
)


results = model.evaluate(test_images, verbose=0)

print("    Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))


class_names = train_images.class_indices
class_names = {v: k for k, v in class_names.items()}

# Gradio Interface for Prediction
def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (TARGET_SIZE[0], TARGET_SIZE[1]))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}

# Launch Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=12)

gr.Interface(
    fn=predict_image,
    inputs=image,
    outputs=label,
    title="Pest Classification",
    description="Upload an image of a pest to classify it into one of the predefined categories.",
).launch(debug=True)