Spaces:
Runtime error
Runtime error
File size: 11,239 Bytes
b66b45c 43b1393 2116a66 b66b45c f8c68bd b66b45c fd3cb72 b66b45c ac6da60 b66b45c 5d4f9ed 2116a66 b66b45c 2116a66 b66b45c fd3cb72 41cbe95 b66b45c fd3cb72 41cbe95 b66b45c 5d4f9ed b66b45c 5d4f9ed b66b45c 2ae2cbd 05e9cff b66b45c eabb9c4 b66b45c fd3cb72 5d4f9ed 2ae2cbd b66b45c 2ae2cbd 05e9cff fd3cb72 b66b45c 68d5b48 b66b45c 68d5b48 b66b45c 8b884e6 b66b45c c0cb430 b66b45c 5d4f9ed 68d5b48 8e0a53d 43b1393 5d4f9ed b66b45c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# Import Data Science Libraries
import gradio as gr
import os
import requests
import gdown
import zipfile
import pandas as pd
from pathlib import Path
from PIL import Image, UnidentifiedImageError
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
import itertools
import random
# Import visualization libraries
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import seaborn as sns
# Tensorflow Libraries
from tensorflow import keras
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.callbacks import Callback, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras import Model
from keras.layers import Dense, Flatten, Dropout, BatchNormalization
# System libraries
from pathlib import Path
import os.path
# Metrics
from sklearn.metrics import classification_report, confusion_matrix
sns.set(style='darkgrid')
# Seed Everything to reproduce results for future use cases
def seed_everything(seed=42):
# Seed value for TensorFlow
tf.random.set_seed(seed)
# Seed value for NumPy
np.random.seed(seed)
# Seed value for Python's random library
random.seed(seed)
# Force TensorFlow to use single thread
# Multiple threads are a potential source of non-reproducible results.
session_conf = tf.compat.v1.ConfigProto(
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1
)
# Make sure that TensorFlow uses a deterministic operation wherever possible
tf.compat.v1.set_random_seed(seed)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
seed_everything()
# URL of the file you want to download
url = "https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/helper_functions.py"
# Send a GET request to the URL
response = requests.get(url)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Save the content of the response (the file) to a local file
with open("helper_functions.py", "wb") as f:
f.write(response.content)
print("File downloaded successfully!")
else:
print("Failed to download file")
# Import series of helper functions for our notebook
from helper_functions import create_tensorboard_callback, plot_loss_curves, unzip_data, compare_historys, walk_through_dir, pred_and_plot
BATCH_SIZE = 32
TARGET_SIZE = (224, 224)
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = Path(extracted_path)
# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
level = root.replace(extracted_path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
# Function to convert the directory path to a DataFrame
def convert_path_to_df(dataset):
image_dir = Path(dataset)
# Get filepaths and labels
filepaths = list(image_dir.glob(r'**/*.JPG')) + list(image_dir.glob(r'**/*.jpg')) + list(image_dir.glob(r'**/*.png')) + list(image_dir.glob(r'**/*.PNG'))
labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths))
filepaths = pd.Series(filepaths, name='Filepath').astype(str)
labels = pd.Series(labels, name='Label')
# Concatenate filepaths and labels
image_df = pd.concat([filepaths, labels], axis=1)
return image_df
# Path to the dataset directory
data_dir = Path('extracted_files/Pest_Dataset')
image_df = convert_path_to_df(data_dir)
# Check for corrupted images within the dataset
for img_p in data_dir.rglob("*.jpg"):
try:
img = Image.open(img_p)
except UnidentifiedImageError:
print(f"Corrupted image file: {img_p}")
# You can save the DataFrame to a CSV for further use
image_df.to_csv('image_dataset.csv', index=False)
print("DataFrame created and saved successfully!")
label_counts = image_df['Label'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
plt.xlabel('Label', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.xticks(rotation=45)
plt.show()
# Display 16 picture of the dataset with their labels
random_index = np.random.randint(0, len(image_df), 16)
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
ax.set_title(image_df.Label[random_index[i]])
plt.tight_layout()
plt.show()
# Function to return a random image path from a given directory
def random_sample(directory):
images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
return random.choice(images)
# Function to compute the Error Level Analysis (ELA) of an image
def compute_ela_cv(path, quality):
temp_filename = 'temp.jpg'
orig = cv2.imread(path)
cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
compressed = cv2.imread(temp_filename)
ela_image = cv2.absdiff(orig, compressed)
ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
return ela_image
# View random sample from the dataset
p = random_sample('extracted_files/Pest_Dataset/beetle')
orig = cv2.imread(p)
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
init_val = 100
columns = 3
rows = 3
fig=plt.figure(figsize=(15, 10))
for i in range(1, columns*rows +1):
quality=init_val - (i-1) * 8
img = compute_ela_cv(path=p, quality=quality)
if i == 1:
img = orig.copy()
ax = fig.add_subplot(rows, columns, i)
ax.title.set_text(f'q: {quality}')
plt.imshow(img)
plt.show()
# Separate in train and test data
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)
train_generator = ImageDataGenerator(
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
validation_split=0.2
)
test_generator = ImageDataGenerator(
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
)
# Split the data into three categories.
train_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='training'
)
val_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='validation'
)
test_images = test_generator.flow_from_dataframe(
dataframe=test_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=False
)
# Data Augmentation Step
augment = tf.keras.Sequential([
tf.keras.layers.Resizing(224, 224),
tf.keras.layers.Rescaling(1./255),
tf.keras.layers.RandomFlip("horizontal"),
tf.keras.layers.RandomRotation(0.1),
tf.keras.layers.RandomZoom(0.1),
tf.keras.layers.RandomContrast(0.1),
])
# Load the pretained model
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
input_shape=(224, 224, 3),
include_top=False,
weights='imagenet',
pooling='max'
)
pretrained_model.trainable = False
# Create checkpoint callback
checkpoint_path = "pests_cats_classification_model_checkpoint"
checkpoint_callback = ModelCheckpoint(checkpoint_path,
save_weights_only=True,
monitor="val_accuracy",
save_best_only=True)
# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs
early_stopping = EarlyStopping(monitor = "val_loss", # watch the val loss metric
patience = 5,
restore_best_weights = True) # if val loss decreases for 3 epochs in a row, stop training
inputs = pretrained_model.input
x = augment(inputs)
# Add new classification layers
x = Flatten()(pretrained_model.output)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = BatchNormalization()(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(12, activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=Adam(0.00001),
loss='categorical_crossentropy',
metrics=['accuracy']
)
history = model.fit(
train_images,
steps_per_epoch=len(train_images),
validation_data=val_images,
validation_steps=len(val_images),
epochs=60, # Adjusted to 30 epochs
callbacks=[
early_stopping,
create_tensorboard_callback("training_logs",
"pests_cats_classification"),
checkpoint_callback,
]
)
results = model.evaluate(test_images, verbose=0)
print(" Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
class_names = train_images.class_indices
class_names = {v: k for k, v in class_names.items()}
# Gradio Interface for Prediction
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (TARGET_SIZE[0], TARGET_SIZE[1]))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
# Launch Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=12)
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Pest Classification",
description="Upload an image of a pest to classify it into one of the predefined categories.",
).launch(debug=True) |