Spaces:
Runtime error
Runtime error
File size: 5,032 Bytes
2116a66 79cd26d 2116a66 41cbe95 2116a66 41cbe95 79cd26d 2116a66 79cd26d 2116a66 41cbe95 2116a66 79cd26d 2116a66 79cd26d 41cbe95 79cd26d 2116a66 41cbe95 79cd26d 05e9cff 41cbe95 79cd26d 8b884e6 05e9cff 41cbe95 79cd26d 05e9cff 79cd26d 41cbe95 05e9cff 41cbe95 05e9cff 41cbe95 05e9cff 41cbe95 83e4be4 41cbe95 77af281 41cbe95 05e9cff 41cbe95 05e9cff 41cbe95 79cd26d 41cbe95 05e9cff 41cbe95 79cd26d 68d5b48 1f0eeb1 79cd26d 41cbe95 79cd26d 41cbe95 79cd26d 68d5b48 79cd26d 68d5b48 41cbe95 68d5b48 41cbe95 68d5b48 79cd26d 8b884e6 c0cb430 6d21ad0 8b884e6 bf81dde 79cd26d bf81dde a2718c9 68d5b48 8e0a53d 5f80dfa 79cd26d a2718c9 79cd26d 41cbe95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import zipfile
import gdown
import pathlib
import tensorflow as tf
from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization, Rescaling
from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler
import gradio as gr
import numpy as np
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
# Set image dimensions and batch size
img_height, img_width = 180, 180
batch_size = 32
# Create training and validation datasets
train_ds = image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
val_ds = image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
class_names = train_ds.class_names
print(class_names)
data_augmentation = tf.keras.Sequential(
[
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
layers.RandomRotation(0.2),
layers.RandomZoom(0.2),
layers.RandomContrast(0.2),
layers.RandomBrightness(0.2),
]
)
num_classes = len(class_names)
model = Sequential()
model.add(data_augmentation)
model.add(Rescaling(1./255))
model.add(Conv2D(32, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(64, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(128, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(256, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(512, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax', name="outputs"))
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['accuracy'])
model.summary()
# Implement early stopping
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
# Learning rate scheduler
def scheduler(epoch, lr):
if epoch < 10:
return lr
else:
return lr * tf.math.exp(-0.1)
lr_scheduler = LearningRateScheduler(scheduler)
# Train the model
epochs = 30
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[early_stopping, lr_scheduler]
)
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (img_height, img_width))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
predicted_class = np.argmax(prediction)
predicted_label = class_names[predicted_class]
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
image = gr.Image()
label = gr.Label(num_top_classes=1)
# Define custom CSS for background image
custom_css = """
body {
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
background-size: cover;
background-repeat: no-repeat;
background-attachment: fixed;
color: white;
}
"""
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Welcome to Agricultural Pest Image Classification",
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
css=custom_css
).launch(debug=True)
|