Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,11 +9,17 @@ from tensorflow import keras
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
import gdown
|
| 14 |
import zipfile
|
|
|
|
| 15 |
import pathlib
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Define the Google Drive shareable link
|
| 18 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 19 |
|
|
@@ -58,20 +64,27 @@ import pathlib
|
|
| 58 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 59 |
data_dir = pathlib.Path(data_dir)
|
| 60 |
|
|
|
|
| 61 |
bees = list(data_dir.glob('bees/*'))
|
| 62 |
print(bees[0])
|
| 63 |
PIL.Image.open(str(bees[0]))
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 68 |
data_dir,
|
| 69 |
validation_split=0.2,
|
| 70 |
subset="training",
|
| 71 |
seed=123,
|
| 72 |
image_size=(img_height, img_width),
|
| 73 |
-
batch_size=batch_size
|
| 74 |
-
|
| 75 |
|
| 76 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 77 |
data_dir,
|
|
@@ -79,12 +92,15 @@ val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
| 79 |
subset="validation",
|
| 80 |
seed=123,
|
| 81 |
image_size=(img_height, img_width),
|
| 82 |
-
batch_size=batch_size
|
| 83 |
-
|
| 84 |
|
| 85 |
class_names = train_ds.class_names
|
| 86 |
print(class_names)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
plt.figure(figsize=(10, 10))
|
| 89 |
for images, labels in train_ds.take(1):
|
| 90 |
for i in range(9):
|
|
@@ -93,6 +109,7 @@ for images, labels in train_ds.take(1):
|
|
| 93 |
plt.title(class_names[labels[i]])
|
| 94 |
plt.axis("off")
|
| 95 |
|
|
|
|
| 96 |
data_augmentation = keras.Sequential(
|
| 97 |
[
|
| 98 |
layers.RandomFlip("horizontal",
|
|
@@ -101,11 +118,10 @@ data_augmentation = keras.Sequential(
|
|
| 101 |
3)),
|
| 102 |
layers.RandomRotation(0.1),
|
| 103 |
layers.RandomZoom(0.1),
|
| 104 |
-
layers.RandomContrast(0.1),
|
| 105 |
-
layers.RandomBrightness(0.1)
|
| 106 |
]
|
| 107 |
)
|
| 108 |
|
|
|
|
| 109 |
plt.figure(figsize=(10, 10))
|
| 110 |
for images, _ in train_ds.take(1):
|
| 111 |
for i in range(9):
|
|
@@ -114,6 +130,7 @@ for images, _ in train_ds.take(1):
|
|
| 114 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 115 |
plt.axis("off")
|
| 116 |
|
|
|
|
| 117 |
num_classes = len(class_names)
|
| 118 |
model = Sequential([
|
| 119 |
data_augmentation,
|
|
@@ -124,11 +141,11 @@ model = Sequential([
|
|
| 124 |
layers.MaxPooling2D(),
|
| 125 |
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
| 126 |
layers.MaxPooling2D(),
|
| 127 |
-
layers.Dropout(0.5),
|
| 128 |
layers.Flatten(),
|
| 129 |
layers.Dense(256, activation='relu'),
|
| 130 |
-
layers.Dropout(0.5),
|
| 131 |
-
layers.Dense(num_classes, activation='softmax', name="outputs")
|
| 132 |
])
|
| 133 |
|
| 134 |
model.compile(optimizer='adam',
|
|
@@ -137,20 +154,16 @@ model.compile(optimizer='adam',
|
|
| 137 |
|
| 138 |
model.summary()
|
| 139 |
|
| 140 |
-
# Learning rate scheduler
|
| 141 |
-
lr_scheduler = keras.callbacks.LearningRateScheduler(lambda epoch: 1e-3 * 10**(epoch / 20))
|
| 142 |
-
|
| 143 |
-
# Early stopping
|
| 144 |
-
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
| 145 |
|
| 146 |
-
epochs =
|
| 147 |
history = model.fit(
|
| 148 |
train_ds,
|
| 149 |
validation_data=val_ds,
|
| 150 |
-
epochs=epochs
|
| 151 |
-
callbacks=[lr_scheduler, early_stopping]
|
| 152 |
)
|
| 153 |
|
|
|
|
|
|
|
| 154 |
# Define category descriptions
|
| 155 |
category_descriptions = {
|
| 156 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
@@ -201,3 +214,4 @@ gr.Interface(
|
|
| 201 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 202 |
css=custom_css
|
| 203 |
).launch(debug=True)
|
|
|
|
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
| 12 |
+
|
| 13 |
from PIL import Image
|
| 14 |
import gdown
|
| 15 |
import zipfile
|
| 16 |
+
|
| 17 |
import pathlib
|
| 18 |
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
# Define the Google Drive shareable link
|
| 24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 25 |
|
|
|
|
| 64 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 65 |
data_dir = pathlib.Path(data_dir)
|
| 66 |
|
| 67 |
+
|
| 68 |
bees = list(data_dir.glob('bees/*'))
|
| 69 |
print(bees[0])
|
| 70 |
PIL.Image.open(str(bees[0]))
|
| 71 |
|
| 72 |
+
|
| 73 |
+
bees = list(data_dir.glob('bees/*'))
|
| 74 |
+
print(bees[0])
|
| 75 |
+
PIL.Image.open(str(bees[0]))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
img_height,img_width=180,180
|
| 79 |
+
batch_size=32
|
| 80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 81 |
data_dir,
|
| 82 |
validation_split=0.2,
|
| 83 |
subset="training",
|
| 84 |
seed=123,
|
| 85 |
image_size=(img_height, img_width),
|
| 86 |
+
batch_size=batch_size)
|
| 87 |
+
|
| 88 |
|
| 89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 90 |
data_dir,
|
|
|
|
| 92 |
subset="validation",
|
| 93 |
seed=123,
|
| 94 |
image_size=(img_height, img_width),
|
| 95 |
+
batch_size=batch_size)
|
| 96 |
+
|
| 97 |
|
| 98 |
class_names = train_ds.class_names
|
| 99 |
print(class_names)
|
| 100 |
|
| 101 |
+
|
| 102 |
+
import matplotlib.pyplot as plt
|
| 103 |
+
|
| 104 |
plt.figure(figsize=(10, 10))
|
| 105 |
for images, labels in train_ds.take(1):
|
| 106 |
for i in range(9):
|
|
|
|
| 109 |
plt.title(class_names[labels[i]])
|
| 110 |
plt.axis("off")
|
| 111 |
|
| 112 |
+
|
| 113 |
data_augmentation = keras.Sequential(
|
| 114 |
[
|
| 115 |
layers.RandomFlip("horizontal",
|
|
|
|
| 118 |
3)),
|
| 119 |
layers.RandomRotation(0.1),
|
| 120 |
layers.RandomZoom(0.1),
|
|
|
|
|
|
|
| 121 |
]
|
| 122 |
)
|
| 123 |
|
| 124 |
+
|
| 125 |
plt.figure(figsize=(10, 10))
|
| 126 |
for images, _ in train_ds.take(1):
|
| 127 |
for i in range(9):
|
|
|
|
| 130 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 131 |
plt.axis("off")
|
| 132 |
|
| 133 |
+
|
| 134 |
num_classes = len(class_names)
|
| 135 |
model = Sequential([
|
| 136 |
data_augmentation,
|
|
|
|
| 141 |
layers.MaxPooling2D(),
|
| 142 |
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
| 143 |
layers.MaxPooling2D(),
|
| 144 |
+
layers.Dropout(0.5), # Adding dropout regularization
|
| 145 |
layers.Flatten(),
|
| 146 |
layers.Dense(256, activation='relu'),
|
| 147 |
+
layers.Dropout(0.5), # Adding dropout regularization
|
| 148 |
+
layers.Dense(num_classes, activation='softmax', name="outputs")
|
| 149 |
])
|
| 150 |
|
| 151 |
model.compile(optimizer='adam',
|
|
|
|
| 154 |
|
| 155 |
model.summary()
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
epochs = 15
|
| 159 |
history = model.fit(
|
| 160 |
train_ds,
|
| 161 |
validation_data=val_ds,
|
| 162 |
+
epochs=epochs
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
+
|
| 166 |
+
|
| 167 |
# Define category descriptions
|
| 168 |
category_descriptions = {
|
| 169 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
|
|
| 214 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 215 |
css=custom_css
|
| 216 |
).launch(debug=True)
|
| 217 |
+
|