Spaces:
Runtime error
Runtime error
File size: 24,103 Bytes
d8b0170 26a5d91 d8b0170 f26901f d8b0170 9e1dbe1 e9b19af 32f0bb8 364a3b9 2adaaee 6695bc6 6ac8017 3f97126 51bce82 f8d4d9e d4cc1fc f8d4d9e 42081fd 12bfca0 833caee ea6676d e313b15 d6fe2e0 3d2fd6d 42081fd 8690539 25cdcb9 8690539 60c4fc1 d8b0170 c58770d d8b0170 e1df490 d8b0170 2c86017 d8b0170 2396c5a d8b0170 4b9e6c5 d95eaa8 d8b0170 4d779d6 f26901f d6f4feb f26901f 2d8fa65 d8b0170 a31c76a 582a982 c991d21 8d6f091 61688f9 5d26056 ebd18a0 f26901f ba2840f d6f4feb c58770d f26901f 7a5454a 49845a7 c58770d d6f4feb 703c5e6 3089ad7 3087fbb 3089ad7 b874a27 f1a5177 9f05a07 94917f4 c706f78 e2a5e38 6ac8017 94917f4 eb4feff a0d22a8 3089ad7 f76af3c f26901f 3089ad7 cc298b6 e6ca355 b94939a e6ca355 51bce82 92b1582 cc298b6 d8b0170 2f1c53d 2d8fa65 a548332 d8b0170 2ad75ef 11dc7fe 036bef7 d8b0170 4e32b83 d8b0170 5eba06f 49845a7 d8b0170 966b4a8 150c0c2 953542c e6ca355 f26901f e6ca355 7e4c3ff e6ca355 a5a0693 9eddcb4 3e2af3a 9eddcb4 c0a7370 e6139ab 5eba06f 9eddcb4 7501b0f ad97103 9eddcb4 77cbfe3 ad97103 9eddcb4 953542c 150c0c2 77cbfe3 8e4c2a4 f26901f 77cbfe3 6695bc6 77cbfe3 02c81e0 6695bc6 77cbfe3 6695bc6 f26901f 6695bc6 77cbfe3 286863d 60bdc34 9eddcb4 8cd08a4 eae1771 d8b0170 f9449cf d8b0170 cff2130 6311068 d8b0170 3e2af3a 8e1fc92 d8b0170 e6139ab 5eba06f e74e0f4 7501b0f a6920aa 77cbfe3 ad97103 a6920aa 3f0ff20 953542c 150c0c2 77cbfe3 8e4c2a4 f26901f 77cbfe3 6695bc6 77cbfe3 6695bc6 77cbfe3 6695bc6 f26901f 6695bc6 77cbfe3 286863d 60bdc34 a6920aa eae1771 a6920aa f9449cf a6920aa cff2130 6311068 a6920aa 3e2af3a eae1771 a6920aa e6139ab 5eba06f e74e0f4 7501b0f 4147862 77cbfe3 ad97103 4147862 8c0b627 953542c 150c0c2 77cbfe3 8e4c2a4 f26901f 77cbfe3 6695bc6 77cbfe3 6695bc6 77cbfe3 6695bc6 f26901f 6695bc6 286863d 60bdc34 4147862 d8b0170 8a296d6 06b376e e364109 06b376e 8a296d6 3c35dc3 8a296d6 3c35dc3 d8b0170 9eddcb4 d8b0170 21ba788 d8b0170 2ad75ef d8b0170 3e2af3a 49845a7 d8b0170 172acd9 d8b0170 172acd9 d8b0170 6cca08f d8b0170 ae9f309 d8b0170 992f3e7 d8b0170 a5a0693 d8b0170 9eddcb4 3e2af3a 9eddcb4 49845a7 9eddcb4 e0b3ce3 d8b0170 e0b3ce3 eae1771 d8b0170 3e2af3a d8b0170 49845a7 d8b0170 eae1771 a6920aa eae1771 a6920aa e0b3ce3 eae1771 a6920aa 3e2af3a a6920aa 49845a7 a6920aa d8b0170 992f631 d8b0170 ca114c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel, EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import gc
import time
import datetime
from gradio import themes
from image_gen_aux import UpscaleWithModel
#from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
os.environ["SAFETENSORS_FAST_GPU"] = "1"
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester E) ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MODEL_OPTIONS = {
"REALVISXL V5.0 BF16": "Kim2091/RealVisXL_V5.0_BF16",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = 0
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
model_repo='John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl'
#'John6666/uber-realistic-porn-merge-ponyxl-urpm-ponyxlhybridv1-sdxl'
#'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl'
#'John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl'
#'John6666/pornworks-real-porn-ponyv04-sdxl'
#'John6666/pornmaster-amateur-sdxlv1vae-sdxl'
rv='ford442/RealVisXL_V5.0_BF16'
text_encoder = CLIPTextModel.from_pretrained(rv, subfolder='text_encoder', token=True)#.to(device=device, dtype=torch.bfloat16)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
tokenizer_1 = CLIPTokenizer.from_pretrained(rv, subfolder='tokenizer', token=True)
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo, subfolder='tokenizer_2', token=True)
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(rv, subfolder='scheduler', token=True)
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
unet = UNet2DConditionModel.from_pretrained(model_repo, low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)
def load_and_prepare_model():
pipe = StableDiffusionXLPipeline.from_pretrained(
#'John6666/uber-realistic-porn-merge-ponyxl-urpm-ponyxlhybridv1-sdxl',
#'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl',
'John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl',
#'John6666/pornworks-real-porn-ponyv04-sdxl',
#'John6666/pornmaster-amateur-sdxlv1vae-sdxl',
#torch_dtype=torch.bfloat16,
add_watermarker=False,
token=True,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
#tokenizer=None,
#tokenizer_2=None,
#scheduler=None,
unet=unet,
vae=None,
)
pipe.scheduler=scheduler
#pipe.tokenizer=tokenizer_1
#pipe.tokenizer_2=tokenizer_2
#pipe.unet=unet
'''
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
'''
#**** NEVER TO BFLOAT BEFORE CUDA****#
#pipe.vae = vaeX #.to(torch.bfloat16)
#**** NEVER TO BFLOAT BEFORE CUDA****#
#pipe.vae.force_upcast=True
# pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/Fantasy_World_XL.safetensors", adapter_name="fantasy")
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/skin_texture_style_v4.safetensors", adapter_name="skin", low_cpu_mem_usage=False,token=HF_TOKEN)
#pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
#pipe.unet.to(memory_format=torch.channels_last)
#pipe.enable_vae_tiling()
#pipe.enable_xformers_memory_efficient_attention()
#pipe.set_adapters(["skin"], adapter_weights=[0.5])
#pipe.unet.set_default_attn_processor()
#**** BETTER WAY ****#
pipe.to(device, torch.bfloat16)
#**** BETTER WAY ****#
pipe.vae = vaeXL.to(device) #.to(torch.bfloat16)
pipe.vae.set_default_attn_processor()
#pipe.to(device)
#pipe.to(torch.bfloat16)
print(f'Pipeline: ')
#print(f'_optional_components: {pipe._optional_components}')
#print(f'watermark: {pipe.watermark}')
print(f'image_processor: {pipe.image_processor}')
#print(f'feature_extractor: {pipe.feature_extractor}')
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
#print(f'UNET: {pipe.unet}')
pipe.watermark=None
pipe.safety_checker=None
return pipe
pipe = load_and_prepare_model()
MAX_SEED = np.iinfo(np.int32).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name,optimize=False,compress_level=0)
return unique_name
def randomize_seed_fn() -> int:
seed = random.randint(0, MAX_SEED)
return seed
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'tst_A_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester E) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model UNET: realistic_porn \n")
upload_to_ftp(filename)
@spaces.GPU(duration=40)
def generate_30(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
lora_scale: float = 0.5,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
#torch.set_default_device('cuda')
#pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
seed = int(randomize_seed_fn())
generator = torch.Generator(device='cuda').manual_seed(seed)
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
pipe.scheduler.set_timesteps(num_inference_steps,device)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv50_E_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = save_image(rv_image)
#torch.cuda.empty_cache()
#gc.collect()
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rv50E_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
return image_paths
@spaces.GPU(duration=60)
def generate_60(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 250,
use_resolution_binning: bool = True,
lora_scale: float = 0.5,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
#torch.set_default_device('cuda')
#pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
seed = int(randomize_seed_fn())
generator = torch.Generator(device='cuda').manual_seed(seed)
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
pipe.scheduler.set_timesteps(num_inference_steps,device)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv50_E_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = save_image(rv_image)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rv50E_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
return image_paths
@spaces.GPU(duration=90)
def generate_90(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 250,
use_resolution_binning: bool = True,
lora_scale: float = 0.5,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
#torch.set_default_device('cuda')
#pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
seed = int(randomize_seed_fn())
generator = torch.Generator(device='cuda').manual_seed(seed)
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
pipe.scheduler.set_timesteps(num_inference_steps,device)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv50_E_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = save_image(rv_image)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rv50E_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
return image_paths
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
model_choice = gr.Dropdown(
label="Model Selection🔻",
choices=list(MODEL_OPTIONS.keys()),
value="REALVISXL V5.0 BF16"
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
lora_scale = gr.Slider(
label="LORA Scale (Skin)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=180,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |