File size: 24,103 Bytes
d8b0170
 
 
 
 
 
26a5d91
d8b0170
 
 
 
 
 
 
f26901f
d8b0170
9e1dbe1
e9b19af
32f0bb8
364a3b9
2adaaee
6695bc6
6ac8017
3f97126
51bce82
f8d4d9e
 
d4cc1fc
f8d4d9e
42081fd
12bfca0
833caee
ea6676d
e313b15
 
d6fe2e0
3d2fd6d
42081fd
8690539
 
25cdcb9
8690539
 
60c4fc1
d8b0170
c58770d
d8b0170
 
 
 
 
 
 
 
 
e1df490
d8b0170
 
 
 
2c86017
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396c5a
d8b0170
4b9e6c5
d95eaa8
d8b0170
 
 
 
 
 
 
 
4d779d6
f26901f
 
 
 
 
 
 
 
 
 
d6f4feb
 
 
 
 
f26901f
 
 
2d8fa65
d8b0170
a31c76a
582a982
c991d21
8d6f091
61688f9
5d26056
ebd18a0
f26901f
ba2840f
 
d6f4feb
 
 
c58770d
f26901f
7a5454a
49845a7
c58770d
d6f4feb
 
 
703c5e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089ad7
3087fbb
3089ad7
 
b874a27
f1a5177
9f05a07
94917f4
c706f78
e2a5e38
6ac8017
94917f4
 
eb4feff
 
a0d22a8
3089ad7
 
 
f76af3c
f26901f
3089ad7
 
cc298b6
e6ca355
 
b94939a
e6ca355
51bce82
92b1582
cc298b6
 
d8b0170
2f1c53d
2d8fa65
a548332
d8b0170
2ad75ef
11dc7fe
036bef7
 
 
 
 
 
 
 
 
 
 
 
 
d8b0170
 
4e32b83
d8b0170
 
5eba06f
49845a7
d8b0170
966b4a8
150c0c2
953542c
e6ca355
f26901f
e6ca355
 
 
 
 
7e4c3ff
e6ca355
 
a5a0693
9eddcb4
 
 
 
 
 
 
 
 
 
 
3e2af3a
9eddcb4
 
c0a7370
e6139ab
5eba06f
9eddcb4
7501b0f
 
 
ad97103
9eddcb4
77cbfe3
ad97103
 
9eddcb4
 
 
 
 
 
 
 
 
 
 
953542c
150c0c2
77cbfe3
8e4c2a4
f26901f
77cbfe3
6695bc6
77cbfe3
02c81e0
 
6695bc6
 
77cbfe3
6695bc6
f26901f
6695bc6
77cbfe3
286863d
60bdc34
9eddcb4
8cd08a4
eae1771
d8b0170
 
 
 
f9449cf
d8b0170
 
cff2130
6311068
d8b0170
3e2af3a
8e1fc92
d8b0170
e6139ab
 
5eba06f
e74e0f4
7501b0f
 
 
a6920aa
77cbfe3
ad97103
 
a6920aa
 
 
 
 
 
 
 
 
 
3f0ff20
953542c
150c0c2
77cbfe3
8e4c2a4
f26901f
77cbfe3
6695bc6
77cbfe3
6695bc6
 
77cbfe3
6695bc6
f26901f
6695bc6
77cbfe3
286863d
60bdc34
a6920aa
eae1771
 
a6920aa
 
 
 
f9449cf
a6920aa
 
cff2130
6311068
a6920aa
3e2af3a
eae1771
a6920aa
e6139ab
 
5eba06f
e74e0f4
7501b0f
 
 
4147862
77cbfe3
ad97103
 
4147862
 
 
 
 
 
 
 
 
 
8c0b627
953542c
150c0c2
77cbfe3
8e4c2a4
f26901f
77cbfe3
6695bc6
77cbfe3
6695bc6
 
77cbfe3
6695bc6
f26901f
6695bc6
286863d
 
60bdc34
4147862
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
8a296d6
06b376e
 
e364109
06b376e
8a296d6
 
 
 
 
3c35dc3
8a296d6
 
 
3c35dc3
d8b0170
 
 
 
 
 
 
 
 
9eddcb4
 
 
d8b0170
 
 
 
 
 
21ba788
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad75ef
d8b0170
 
3e2af3a
 
 
 
 
 
49845a7
d8b0170
 
 
 
 
 
172acd9
d8b0170
 
 
 
 
 
172acd9
d8b0170
 
 
 
 
6cca08f
d8b0170
ae9f309
d8b0170
 
 
 
992f3e7
d8b0170
a5a0693
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eddcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2af3a
9eddcb4
49845a7
9eddcb4
 
e0b3ce3
 
 
d8b0170
e0b3ce3
eae1771
d8b0170
 
 
 
 
 
 
 
 
 
3e2af3a
d8b0170
49845a7
d8b0170
eae1771
a6920aa
 
eae1771
a6920aa
e0b3ce3
eae1771
a6920aa
 
 
 
 
 
 
 
 
 
3e2af3a
a6920aa
49845a7
a6920aa
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992f631
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca114c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel, EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import gc
import time
import datetime
from gradio import themes
from image_gen_aux import UpscaleWithModel
#from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"

torch.set_float32_matmul_precision("highest")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
os.environ["SAFETENSORS_FAST_GPU"] = "1"

FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

    
DESCRIPTIONXX = """
    ## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester E) ⚡⚡⚡⚡
"""

examples = [

    "Many apples splashed with drops of water within a fancy bowl 4k, hdr  --v 6.0 --style raw",
    "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]

MODEL_OPTIONS = {
    "REALVISXL V5.0 BF16": "Kim2091/RealVisXL_V5.0_BF16",
}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = 0
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")

upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

model_repo='John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl'
        #'John6666/uber-realistic-porn-merge-ponyxl-urpm-ponyxlhybridv1-sdxl'
        #'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl'
        #'John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl'
        #'John6666/pornworks-real-porn-ponyv04-sdxl'
        #'John6666/pornmaster-amateur-sdxlv1vae-sdxl'


rv='ford442/RealVisXL_V5.0_BF16'
    
text_encoder = CLIPTextModel.from_pretrained(rv, subfolder='text_encoder', token=True)#.to(device=device, dtype=torch.bfloat16)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
tokenizer_1 = CLIPTokenizer.from_pretrained(rv, subfolder='tokenizer', token=True)
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo, subfolder='tokenizer_2', token=True)
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(rv, subfolder='scheduler', token=True)
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
unet = UNet2DConditionModel.from_pretrained(model_repo, low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)

def load_and_prepare_model():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        #'John6666/uber-realistic-porn-merge-ponyxl-urpm-ponyxlhybridv1-sdxl',
        #'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl',
        'John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl',
        #'John6666/pornworks-real-porn-ponyv04-sdxl',
        #'John6666/pornmaster-amateur-sdxlv1vae-sdxl',
        #torch_dtype=torch.bfloat16,
        add_watermarker=False,
        token=True,
        text_encoder=text_encoder,
        text_encoder_2=text_encoder_2,
        #tokenizer=None,
        #tokenizer_2=None,
        #scheduler=None,
        unet=unet,
        vae=None,
    )
   
    pipe.scheduler=scheduler
    #pipe.tokenizer=tokenizer_1
    #pipe.tokenizer_2=tokenizer_2
    #pipe.unet=unet
    '''
    scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
        
    '''
    
    #****  NEVER TO BFLOAT BEFORE CUDA****#
    #pipe.vae = vaeX #.to(torch.bfloat16)
    #****  NEVER TO BFLOAT BEFORE CUDA****#

    #pipe.vae.force_upcast=True
    # pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/Fantasy_World_XL.safetensors", adapter_name="fantasy")
    pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/skin_texture_style_v4.safetensors", adapter_name="skin", low_cpu_mem_usage=False,token=HF_TOKEN)
    
    #pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
    #pipe.unet.to(memory_format=torch.channels_last)
    #pipe.enable_vae_tiling()
    #pipe.enable_xformers_memory_efficient_attention()
    
    #pipe.set_adapters(["skin"], adapter_weights=[0.5])    
    #pipe.unet.set_default_attn_processor()
    
    #**** BETTER WAY ****#
    pipe.to(device, torch.bfloat16)
    #**** BETTER WAY ****#
    pipe.vae = vaeXL.to(device) #.to(torch.bfloat16)
    pipe.vae.set_default_attn_processor()
    #pipe.to(device)
    #pipe.to(torch.bfloat16)
    print(f'Pipeline: ')
    #print(f'_optional_components: {pipe._optional_components}')
    #print(f'watermark: {pipe.watermark}')
    print(f'image_processor: {pipe.image_processor}')
    #print(f'feature_extractor: {pipe.feature_extractor}')
    print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
    #print(f'UNET: {pipe.unet}')
    pipe.watermark=None
    pipe.safety_checker=None  
    return pipe
    
pipe = load_and_prepare_model()
MAX_SEED = np.iinfo(np.int32).max

neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")
        
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name,optimize=False,compress_level=0)
    return unique_name

def randomize_seed_fn() -> int:
    seed = random.randint(0, MAX_SEED)
    return seed

def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
    filename= f'tst_A_{timestamp}.txt'
    with open(filename, "w") as f:
        f.write(f"Realvis 5.0 (Tester E) \n")
        f.write(f"Date/time: {timestamp} \n")
        f.write(f"Prompt: {prompt} \n")
        f.write(f"Steps: {num_inference_steps} \n")
        f.write(f"Guidance Scale: {guidance_scale} \n")
        f.write(f"SPACE SETUP: \n")
        f.write(f"Model UNET: realistic_porn \n")
    upload_to_ftp(filename) 
    
@spaces.GPU(duration=40)
def generate_30(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    use_resolution_binning: bool = True, 
    lora_scale: float = 0.5,
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    #torch.set_default_device('cuda')
    #pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
    seed = int(randomize_seed_fn())
    generator = torch.Generator(device='cuda').manual_seed(seed)

    pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
    pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
    #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
    options = {
        "prompt": [prompt],
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    pipe.scheduler.set_timesteps(num_inference_steps,device)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv50_E_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)
    image_paths = save_image(rv_image)
    #torch.cuda.empty_cache()
    #gc.collect()
    torch.set_float32_matmul_precision("medium")
    with torch.no_grad():
        upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
    downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
    downscale_path = f"rv50E_upscale_{timestamp}.png"
    downscale1.save(downscale_path,optimize=False,compress_level=0)
    upload_to_ftp(downscale_path) 
    image_paths = [save_image(downscale1)]
    return image_paths

@spaces.GPU(duration=60)
def generate_60(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 250,
    use_resolution_binning: bool = True, 
    lora_scale: float = 0.5,
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    #torch.set_default_device('cuda')
    #pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
    seed = int(randomize_seed_fn())
    generator = torch.Generator(device='cuda').manual_seed(seed)

    pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
    pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
    options = {
        "prompt": [prompt],
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    pipe.scheduler.set_timesteps(num_inference_steps,device)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv50_E_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)
    image_paths = save_image(rv_image)
    torch.set_float32_matmul_precision("medium")
    with torch.no_grad():
        upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
    downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
    downscale_path = f"rv50E_upscale_{timestamp}.png"
    downscale1.save(downscale_path,optimize=False,compress_level=0)
    upload_to_ftp(downscale_path) 
    image_paths = [save_image(downscale1)]
    return image_paths

@spaces.GPU(duration=90)
def generate_90(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 250,
    use_resolution_binning: bool = True, 
    lora_scale: float = 0.5,
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    #torch.set_default_device('cuda')
    #pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
    seed = int(randomize_seed_fn())
    generator = torch.Generator(device='cuda').manual_seed(seed)

    pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
    pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
    options = {
        "prompt": [prompt],
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    pipe.scheduler.set_timesteps(num_inference_steps,device)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv50_E_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)
    image_paths = save_image(rv_image)
    torch.set_float32_matmul_precision("medium")
    with torch.no_grad():
        upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
    downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
    downscale_path = f"rv50E_upscale_{timestamp}.png"
    downscale1.save(downscale_path,optimize=False,compress_level=0)
    upload_to_ftp(downscale_path) 
    image_paths = [save_image(downscale1)]
    return image_paths

def load_predefined_images1():
    predefined_images1 = [
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
    ]
    return predefined_images1

css = '''
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
h1{text-align:center}
footer {
    visibility: hidden
}
body {
  background-color: green;
}
'''

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button_30 = gr.Button("Run 30 Seconds", scale=0)
        run_button_60 = gr.Button("Run 60 Seconds", scale=0)
        run_button_90 = gr.Button("Run 90 Seconds", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():
        model_choice = gr.Dropdown(
            label="Model Selection🔻",
            choices=list(MODEL_OPTIONS.keys()),
            value="REALVISXL V5.0 BF16"
        )

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner',  'distorted face','amateur'",
                    visible=True,
                )
        lora_scale = gr.Slider(
            label="LORA Scale (Skin)",
            minimum=0.0,
            maximum=1.0,
            step=0.01,
            value=0.5,
        )
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=30,
                step=0.1,
                value=3.8,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=1000,
                step=10,
                value=180,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            run_button_30.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_30,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result],
    )
    
    gr.on(
        triggers=[
            run_button_60.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_60,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result],
    )
    
    gr.on(
        triggers=[
            run_button_90.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_90,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result],
    )

    gr.Markdown("### REALVISXL V5.0")
    predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. 
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """) 

def text_generation(input_text, seed):
    full_prompt = "Text Generator Application by ecarbo"
    return full_prompt
    
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"

if __name__ == "__main__":
    demo_interface = demo.queue(max_size=50)  # Remove .launch() here
    text_gen_interface = gr.Interface(
        fn=text_generation,
        inputs=[
            gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
            gr.Number(value=10, label="Enter seed number")
        ],
        outputs=gr.Textbox(label="Text Generated"),
        title=title,
        description=description,
    )
    combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
    combined_interface.launch(show_api=False)