Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -110,11 +110,11 @@ model_repo='John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl'
|
|
110 |
|
111 |
rv='ford442/RealVisXL_V5.0_BF16'
|
112 |
|
113 |
-
text_encoder = CLIPTextModel.from_pretrained(rv,
|
114 |
-
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo,
|
115 |
-
tokenizer_1 = CLIPTokenizer.from_pretrained(rv,
|
116 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo,
|
117 |
-
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(rv,
|
118 |
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
119 |
unet = UNet2DConditionModel.from_pretrained(model_repo, low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)
|
120 |
|
@@ -130,17 +130,17 @@ def load_and_prepare_model():
|
|
130 |
token=True,
|
131 |
text_encoder=None,
|
132 |
text_encoder_2=None,
|
133 |
-
tokenizer=None,
|
134 |
-
tokenizer_2=None,
|
135 |
-
scheduler=None,
|
136 |
-
unet=
|
137 |
vae=None,
|
138 |
)
|
139 |
|
140 |
-
pipe.scheduler=scheduler
|
141 |
-
pipe.tokenizer=tokenizer_1
|
142 |
-
pipe.tokenizer_2=tokenizer_2
|
143 |
-
pipe.unet=unet
|
144 |
'''
|
145 |
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
146 |
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
|
|
110 |
|
111 |
rv='ford442/RealVisXL_V5.0_BF16'
|
112 |
|
113 |
+
text_encoder = CLIPTextModel.from_pretrained(rv, subfolder='text_encoder', token=True)#.to(device=device, dtype=torch.bfloat16)
|
114 |
+
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo, subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
|
115 |
+
tokenizer_1 = CLIPTokenizer.from_pretrained(rv, subfolder='tokenizer', token=True)
|
116 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo, subfolder='tokenizer_2', token=True)
|
117 |
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(rv, subfolder='scheduler', token=True)
|
118 |
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
119 |
unet = UNet2DConditionModel.from_pretrained(model_repo, low_cpu_mem_usage=False, subfolder='unet', upcast_attention=True, attention_type='gated-text-image', token=True)
|
120 |
|
|
|
130 |
token=True,
|
131 |
text_encoder=None,
|
132 |
text_encoder_2=None,
|
133 |
+
#tokenizer=None,
|
134 |
+
#tokenizer_2=None,
|
135 |
+
#scheduler=None,
|
136 |
+
unet=unet,
|
137 |
vae=None,
|
138 |
)
|
139 |
|
140 |
+
#pipe.scheduler=scheduler
|
141 |
+
#pipe.tokenizer=tokenizer_1
|
142 |
+
#pipe.tokenizer_2=tokenizer_2
|
143 |
+
#pipe.unet=unet
|
144 |
'''
|
145 |
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
146 |
The component-wise standard deviation of the trained latent space computed using the first batch of the
|