ford442 commited on
Commit
7a5454a
Β·
1 Parent(s): 3ebf74b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -107,7 +107,6 @@ def load_and_prepare_model(model_id):
107
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
108
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to('cuda')
109
  # vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", torch_dtype=torch.float32,safety_checker=None)
110
-
111
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
112
  # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
113
  pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -115,15 +114,14 @@ def load_and_prepare_model(model_id):
115
  # torch_dtype=torch.bfloat16,
116
  add_watermarker=False,
117
  use_safetensors=True,
118
- # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
119
  vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None),
120
- scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
121
- ).to(device=device, dtype=torch.bfloat16)
122
- # sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start =0.00085,beta_end =0.012,steps_offset =1,)
123
- # pipe.scheduler=sched
124
  #pipe.to('cuda')
125
  # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
126
- #pipe.to(device=device, dtype=torch.bfloat16)
127
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
128
  #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
129
  #sched = DDIMScheduler.from_config(pipe.scheduler.config)
 
107
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
108
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to('cuda')
109
  # vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", torch_dtype=torch.float32,safety_checker=None)
 
110
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
111
  # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
112
  pipe = StableDiffusionXLPipeline.from_pretrained(
 
114
  # torch_dtype=torch.bfloat16,
115
  add_watermarker=False,
116
  use_safetensors=True,
117
+ # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
118
  vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None),
119
+ #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
120
+ )
121
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
 
122
  #pipe.to('cuda')
123
  # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
124
+ pipe.to(device=device, dtype=torch.bfloat16)
125
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
126
  #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
127
  #sched = DDIMScheduler.from_config(pipe.scheduler.config)