Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -257,15 +257,11 @@ def generate_30(
|
|
257 |
num_inference_steps: int = 125,
|
258 |
use_resolution_binning: bool = True,
|
259 |
denoise: float = 0.3,
|
260 |
-
|
261 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
262 |
):
|
263 |
#torch.backends.cudnn.benchmark = False
|
264 |
-
|
265 |
-
#gc.collect()
|
266 |
-
#global models
|
267 |
-
#pipe = models[model_choice]
|
268 |
-
pipe.vae.vae_scale_factor=vae_scale
|
269 |
seed = int(randomize_seed_fn())
|
270 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
271 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -319,15 +315,11 @@ def generate_60(
|
|
319 |
num_inference_steps: int = 250,
|
320 |
use_resolution_binning: bool = True,
|
321 |
denoise: float = 0.3,
|
322 |
-
|
323 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
324 |
):
|
325 |
#torch.backends.cudnn.benchmark = False
|
326 |
-
|
327 |
-
#gc.collect()
|
328 |
-
#global models
|
329 |
-
#pipe = models[model_choice]
|
330 |
-
pipe.vae.vae_scale_factor=vae_scale
|
331 |
seed = int(randomize_seed_fn())
|
332 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
333 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -381,15 +373,11 @@ def generate_90(
|
|
381 |
num_inference_steps: int = 250,
|
382 |
use_resolution_binning: bool = True,
|
383 |
denoise: float = 0.3,
|
384 |
-
|
385 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
386 |
):
|
387 |
#torch.backends.cudnn.benchmark = False
|
388 |
-
|
389 |
-
#gc.collect()
|
390 |
-
#global models
|
391 |
-
#pipe = models[model_choice]
|
392 |
-
pipe.vae.vae_scale_factor=vae_scale
|
393 |
seed = int(randomize_seed_fn())
|
394 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
395 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -506,12 +494,12 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
506 |
step=0.01,
|
507 |
value=0.3,
|
508 |
)
|
509 |
-
|
510 |
-
label="
|
511 |
-
minimum=
|
512 |
-
maximum=
|
513 |
-
step=
|
514 |
-
value=
|
515 |
)
|
516 |
with gr.Row():
|
517 |
width = gr.Slider(
|
@@ -574,7 +562,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
574 |
guidance_scale,
|
575 |
num_inference_steps,
|
576 |
denoise,
|
577 |
-
|
578 |
],
|
579 |
outputs=[result],
|
580 |
)
|
@@ -596,7 +584,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
596 |
guidance_scale,
|
597 |
num_inference_steps,
|
598 |
denoise,
|
599 |
-
|
600 |
],
|
601 |
outputs=[result],
|
602 |
)
|
@@ -618,7 +606,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
618 |
guidance_scale,
|
619 |
num_inference_steps,
|
620 |
denoise,
|
621 |
-
|
622 |
],
|
623 |
outputs=[result],
|
624 |
)
|
|
|
257 |
num_inference_steps: int = 125,
|
258 |
use_resolution_binning: bool = True,
|
259 |
denoise: float = 0.3,
|
260 |
+
lora_scale: float = 0.5,
|
261 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
262 |
):
|
263 |
#torch.backends.cudnn.benchmark = False
|
264 |
+
pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
|
|
|
|
|
|
|
|
265 |
seed = int(randomize_seed_fn())
|
266 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
267 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
315 |
num_inference_steps: int = 250,
|
316 |
use_resolution_binning: bool = True,
|
317 |
denoise: float = 0.3,
|
318 |
+
lora_scale: float = 0.5,
|
319 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
320 |
):
|
321 |
#torch.backends.cudnn.benchmark = False
|
322 |
+
pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
|
|
|
|
|
|
|
|
323 |
seed = int(randomize_seed_fn())
|
324 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
325 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
373 |
num_inference_steps: int = 250,
|
374 |
use_resolution_binning: bool = True,
|
375 |
denoise: float = 0.3,
|
376 |
+
lora_scale: float = 0.5,
|
377 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
378 |
):
|
379 |
#torch.backends.cudnn.benchmark = False
|
380 |
+
pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
|
|
|
|
|
|
|
|
381 |
seed = int(randomize_seed_fn())
|
382 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
383 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
494 |
step=0.01,
|
495 |
value=0.3,
|
496 |
)
|
497 |
+
lora_scale = gr.Slider(
|
498 |
+
label="LORA Scale (Skin)",
|
499 |
+
minimum=0.0,
|
500 |
+
maximum=1.0,
|
501 |
+
step=0.01,
|
502 |
+
value=0.5,
|
503 |
)
|
504 |
with gr.Row():
|
505 |
width = gr.Slider(
|
|
|
562 |
guidance_scale,
|
563 |
num_inference_steps,
|
564 |
denoise,
|
565 |
+
lora_scale,
|
566 |
],
|
567 |
outputs=[result],
|
568 |
)
|
|
|
584 |
guidance_scale,
|
585 |
num_inference_steps,
|
586 |
denoise,
|
587 |
+
lora_scale,
|
588 |
],
|
589 |
outputs=[result],
|
590 |
)
|
|
|
606 |
guidance_scale,
|
607 |
num_inference_steps,
|
608 |
denoise,
|
609 |
+
lora_scale,
|
610 |
],
|
611 |
outputs=[result],
|
612 |
)
|