ford442 commited on
Commit
77cbfe3
·
verified ·
1 Parent(s): 43fb237

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -49
app.py CHANGED
@@ -274,12 +274,9 @@ def generate_30(
274
  num_inference_steps: int = 125,
275
  randomize_seed: bool = False,
276
  use_resolution_binning: bool = True,
277
- num_images: int = 1,
278
  denoise: float = 0.3,
279
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
280
-
281
  ):
282
- print(f'debug: num_images: {num_images} denoise: {denoise}')
283
  torch.backends.cudnn.benchmark = False
284
  torch.cuda.empty_cache()
285
  gc.collect()
@@ -289,7 +286,7 @@ def generate_30(
289
  generator = torch.Generator(device='cuda').manual_seed(seed)
290
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
291
  options = {
292
- "prompt": [prompt] * num_images,
293
  "negative_prompt": [negative_prompt],
294
  "negative_prompt_2": [neg_prompt_2],
295
  "strength": denoise,
@@ -307,25 +304,21 @@ def generate_30(
307
  pipe.scheduler.set_timesteps(num_inference_steps,device)
308
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
309
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
310
- for i in range(0, num_images, BATCH_SIZE):
311
- batch_options = options.copy()
312
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
313
- if "negative_prompt" in batch_options:
314
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
315
- images.extend(pipe(**batch_options).images)
316
- sd_image_path = f"rv50_A_{timestamp}.png"
317
- images[0].save(sd_image_path,optimize=False,compress_level=0)
318
  upload_to_ftp(sd_image_path)
319
- image_paths = [save_image(img) for img in images]
320
  torch.cuda.empty_cache()
321
  gc.collect()
322
  torch.set_float32_matmul_precision("medium")
323
  with torch.no_grad():
324
- upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
325
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
326
  downscale_path = f"rv50_upscale_{timestamp}.png"
327
  downscale1.save(downscale_path,optimize=False,compress_level=0)
328
- upload_to_ftp(downscale_path)
329
  image_paths = [save_image(downscale1)]
330
  return image_paths, seed
331
 
@@ -343,7 +336,6 @@ def generate_60(
343
  num_inference_steps: int = 250,
344
  randomize_seed: bool = False,
345
  use_resolution_binning: bool = True,
346
- num_images: int = 1,
347
  denoise: float = 0.3,
348
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
349
  ):
@@ -356,7 +348,7 @@ def generate_60(
356
  generator = torch.Generator(device='cuda').manual_seed(seed)
357
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
358
  options = {
359
- "prompt": [prompt] * num_images,
360
  "negative_prompt": [negative_prompt],
361
  "negative_prompt_2": [neg_prompt_2],
362
  "strength": denoise,
@@ -374,25 +366,21 @@ def generate_60(
374
  pipe.scheduler.set_timesteps(num_inference_steps,device)
375
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
376
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
377
- for i in range(0, num_images, BATCH_SIZE):
378
- batch_options = options.copy()
379
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
380
- if "negative_prompt" in batch_options:
381
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
382
- images.extend(pipe(**batch_options).images)
383
- sd_image_path = f"rv50_A_{timestamp}.png"
384
- images[0].save(sd_image_path,optimize=False,compress_level=0)
385
  upload_to_ftp(sd_image_path)
386
- image_paths = [save_image(img) for img in images]
387
  torch.cuda.empty_cache()
388
  gc.collect()
389
  torch.set_float32_matmul_precision("medium")
390
  with torch.no_grad():
391
- upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
392
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
393
  downscale_path = f"rv50_upscale_{timestamp}.png"
394
  downscale1.save(downscale_path,optimize=False,compress_level=0)
395
- upload_to_ftp(downscale_path)
396
  image_paths = [save_image(downscale1)]
397
  return image_paths, seed
398
 
@@ -410,7 +398,6 @@ def generate_90(
410
  num_inference_steps: int = 250,
411
  randomize_seed: bool = False,
412
  use_resolution_binning: bool = True,
413
- num_images: int = 1,
414
  denoise: float = 0.3,
415
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
416
  ):
@@ -423,7 +410,7 @@ def generate_90(
423
  generator = torch.Generator(device='cuda').manual_seed(seed)
424
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
425
  options = {
426
- "prompt": [prompt] * num_images,
427
  "negative_prompt": [negative_prompt],
428
  "negative_prompt_2": [neg_prompt_2],
429
  "strength": denoise,
@@ -441,21 +428,17 @@ def generate_90(
441
  pipe.scheduler.set_timesteps(num_inference_steps,device)
442
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
443
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
444
- for i in range(0, num_images, BATCH_SIZE):
445
- batch_options = options.copy()
446
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
447
- if "negative_prompt" in batch_options:
448
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
449
- images.extend(pipe(**batch_options).images)
450
  sd_image_path = f"rv50_A_{seed}.png"
451
- images[0].save(sd_image_path,optimize=False,compress_level=0)
452
  upload_to_ftp(sd_image_path)
453
- image_paths = [save_image(img) for img in images]
454
  torch.cuda.empty_cache()
455
  gc.collect()
456
  torch.set_float32_matmul_precision("medium")
457
  with torch.no_grad():
458
- upscale = upscaler(images[0], tiling=True, tile_width=256, tile_height=256)
459
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
460
  downscale_path = f"rv50_upscale_{timestamp}.png"
461
  downscale1.save(downscale_path,optimize=False,compress_level=0)
@@ -521,13 +504,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
521
  value=DEFAULT_STYLE_NAME,
522
  label="Quality Style",
523
  )
524
- num_images = gr.Slider(
525
- label="Number of Images",
526
- minimum=1,
527
- maximum=5,
528
- step=1,
529
- value=1,
530
- )
531
  with gr.Row():
532
  with gr.Column(scale=1):
533
  use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
@@ -616,7 +592,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
616
  guidance_scale,
617
  num_inference_steps,
618
  randomize_seed,
619
- num_images,
620
  denoise
621
  ],
622
  outputs=[result, seed],
@@ -640,7 +615,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
640
  guidance_scale,
641
  num_inference_steps,
642
  randomize_seed,
643
- num_images,
644
  denoise
645
  ],
646
  outputs=[result, seed],
@@ -664,7 +638,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
664
  guidance_scale,
665
  num_inference_steps,
666
  randomize_seed,
667
- num_images,
668
  denoise
669
  ],
670
  outputs=[result, seed],
 
274
  num_inference_steps: int = 125,
275
  randomize_seed: bool = False,
276
  use_resolution_binning: bool = True,
 
277
  denoise: float = 0.3,
278
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
 
279
  ):
 
280
  torch.backends.cudnn.benchmark = False
281
  torch.cuda.empty_cache()
282
  gc.collect()
 
286
  generator = torch.Generator(device='cuda').manual_seed(seed)
287
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
288
  options = {
289
+ "prompt": [prompt],
290
  "negative_prompt": [negative_prompt],
291
  "negative_prompt_2": [neg_prompt_2],
292
  "strength": denoise,
 
304
  pipe.scheduler.set_timesteps(num_inference_steps,device)
305
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
306
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
307
+ batch_options = options.copy()
308
+ rv_image = images.extend(pipe(**batch_options).images[0])
309
+ sd_image_path = f"rv50_A_{seed}.png"
310
+ rv_image.save(sd_image_path,optimize=False,compress_level=0)
 
 
 
 
311
  upload_to_ftp(sd_image_path)
312
+ image_paths = save_image(rv_image)
313
  torch.cuda.empty_cache()
314
  gc.collect()
315
  torch.set_float32_matmul_precision("medium")
316
  with torch.no_grad():
317
+ upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
318
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
319
  downscale_path = f"rv50_upscale_{timestamp}.png"
320
  downscale1.save(downscale_path,optimize=False,compress_level=0)
321
+ upload_to_ftp(downscale_path)
322
  image_paths = [save_image(downscale1)]
323
  return image_paths, seed
324
 
 
336
  num_inference_steps: int = 250,
337
  randomize_seed: bool = False,
338
  use_resolution_binning: bool = True,
 
339
  denoise: float = 0.3,
340
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
341
  ):
 
348
  generator = torch.Generator(device='cuda').manual_seed(seed)
349
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
350
  options = {
351
+ "prompt": [prompt],
352
  "negative_prompt": [negative_prompt],
353
  "negative_prompt_2": [neg_prompt_2],
354
  "strength": denoise,
 
366
  pipe.scheduler.set_timesteps(num_inference_steps,device)
367
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
368
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
369
+ batch_options = options.copy()
370
+ rv_image = images.extend(pipe(**batch_options).images[0])
371
+ sd_image_path = f"rv50_A_{seed}.png"
372
+ rv_image.save(sd_image_path,optimize=False,compress_level=0)
 
 
 
 
373
  upload_to_ftp(sd_image_path)
374
+ image_paths = save_image(rv_image)
375
  torch.cuda.empty_cache()
376
  gc.collect()
377
  torch.set_float32_matmul_precision("medium")
378
  with torch.no_grad():
379
+ upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
380
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
381
  downscale_path = f"rv50_upscale_{timestamp}.png"
382
  downscale1.save(downscale_path,optimize=False,compress_level=0)
383
+ upload_to_ftp(downscale_path)
384
  image_paths = [save_image(downscale1)]
385
  return image_paths, seed
386
 
 
398
  num_inference_steps: int = 250,
399
  randomize_seed: bool = False,
400
  use_resolution_binning: bool = True,
 
401
  denoise: float = 0.3,
402
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
403
  ):
 
410
  generator = torch.Generator(device='cuda').manual_seed(seed)
411
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
412
  options = {
413
+ "prompt": [prompt],
414
  "negative_prompt": [negative_prompt],
415
  "negative_prompt_2": [neg_prompt_2],
416
  "strength": denoise,
 
428
  pipe.scheduler.set_timesteps(num_inference_steps,device)
429
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
430
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
431
+ batch_options = options.copy()
432
+ rv_image = images.extend(pipe(**batch_options).images[0])
 
 
 
 
433
  sd_image_path = f"rv50_A_{seed}.png"
434
+ rv_image.save(sd_image_path,optimize=False,compress_level=0)
435
  upload_to_ftp(sd_image_path)
436
+ image_paths = save_image(rv_image)
437
  torch.cuda.empty_cache()
438
  gc.collect()
439
  torch.set_float32_matmul_precision("medium")
440
  with torch.no_grad():
441
+ upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
442
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
443
  downscale_path = f"rv50_upscale_{timestamp}.png"
444
  downscale1.save(downscale_path,optimize=False,compress_level=0)
 
504
  value=DEFAULT_STYLE_NAME,
505
  label="Quality Style",
506
  )
 
 
 
 
 
 
 
507
  with gr.Row():
508
  with gr.Column(scale=1):
509
  use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
 
592
  guidance_scale,
593
  num_inference_steps,
594
  randomize_seed,
 
595
  denoise
596
  ],
597
  outputs=[result, seed],
 
615
  guidance_scale,
616
  num_inference_steps,
617
  randomize_seed,
 
618
  denoise
619
  ],
620
  outputs=[result, seed],
 
638
  guidance_scale,
639
  num_inference_steps,
640
  randomize_seed,
 
641
  denoise
642
  ],
643
  outputs=[result, seed],