Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -274,12 +274,9 @@ def generate_30(
|
|
274 |
num_inference_steps: int = 125,
|
275 |
randomize_seed: bool = False,
|
276 |
use_resolution_binning: bool = True,
|
277 |
-
num_images: int = 1,
|
278 |
denoise: float = 0.3,
|
279 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
280 |
-
|
281 |
):
|
282 |
-
print(f'debug: num_images: {num_images} denoise: {denoise}')
|
283 |
torch.backends.cudnn.benchmark = False
|
284 |
torch.cuda.empty_cache()
|
285 |
gc.collect()
|
@@ -289,7 +286,7 @@ def generate_30(
|
|
289 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
290 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
291 |
options = {
|
292 |
-
"prompt": [prompt]
|
293 |
"negative_prompt": [negative_prompt],
|
294 |
"negative_prompt_2": [neg_prompt_2],
|
295 |
"strength": denoise,
|
@@ -307,25 +304,21 @@ def generate_30(
|
|
307 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
308 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
309 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
315 |
-
images.extend(pipe(**batch_options).images)
|
316 |
-
sd_image_path = f"rv50_A_{timestamp}.png"
|
317 |
-
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
318 |
upload_to_ftp(sd_image_path)
|
319 |
-
image_paths =
|
320 |
torch.cuda.empty_cache()
|
321 |
gc.collect()
|
322 |
torch.set_float32_matmul_precision("medium")
|
323 |
with torch.no_grad():
|
324 |
-
upscale = upscaler(
|
325 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
326 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
327 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
328 |
-
upload_to_ftp(downscale_path)
|
329 |
image_paths = [save_image(downscale1)]
|
330 |
return image_paths, seed
|
331 |
|
@@ -343,7 +336,6 @@ def generate_60(
|
|
343 |
num_inference_steps: int = 250,
|
344 |
randomize_seed: bool = False,
|
345 |
use_resolution_binning: bool = True,
|
346 |
-
num_images: int = 1,
|
347 |
denoise: float = 0.3,
|
348 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
349 |
):
|
@@ -356,7 +348,7 @@ def generate_60(
|
|
356 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
357 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
358 |
options = {
|
359 |
-
"prompt": [prompt]
|
360 |
"negative_prompt": [negative_prompt],
|
361 |
"negative_prompt_2": [neg_prompt_2],
|
362 |
"strength": denoise,
|
@@ -374,25 +366,21 @@ def generate_60(
|
|
374 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
375 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
376 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
382 |
-
images.extend(pipe(**batch_options).images)
|
383 |
-
sd_image_path = f"rv50_A_{timestamp}.png"
|
384 |
-
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
385 |
upload_to_ftp(sd_image_path)
|
386 |
-
image_paths =
|
387 |
torch.cuda.empty_cache()
|
388 |
gc.collect()
|
389 |
torch.set_float32_matmul_precision("medium")
|
390 |
with torch.no_grad():
|
391 |
-
upscale = upscaler(
|
392 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
393 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
394 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
395 |
-
upload_to_ftp(downscale_path)
|
396 |
image_paths = [save_image(downscale1)]
|
397 |
return image_paths, seed
|
398 |
|
@@ -410,7 +398,6 @@ def generate_90(
|
|
410 |
num_inference_steps: int = 250,
|
411 |
randomize_seed: bool = False,
|
412 |
use_resolution_binning: bool = True,
|
413 |
-
num_images: int = 1,
|
414 |
denoise: float = 0.3,
|
415 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
416 |
):
|
@@ -423,7 +410,7 @@ def generate_90(
|
|
423 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
424 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
425 |
options = {
|
426 |
-
"prompt": [prompt]
|
427 |
"negative_prompt": [negative_prompt],
|
428 |
"negative_prompt_2": [neg_prompt_2],
|
429 |
"strength": denoise,
|
@@ -441,21 +428,17 @@ def generate_90(
|
|
441 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
442 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
443 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
|
444 |
-
|
445 |
-
|
446 |
-
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
447 |
-
if "negative_prompt" in batch_options:
|
448 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
449 |
-
images.extend(pipe(**batch_options).images)
|
450 |
sd_image_path = f"rv50_A_{seed}.png"
|
451 |
-
|
452 |
upload_to_ftp(sd_image_path)
|
453 |
-
image_paths =
|
454 |
torch.cuda.empty_cache()
|
455 |
gc.collect()
|
456 |
torch.set_float32_matmul_precision("medium")
|
457 |
with torch.no_grad():
|
458 |
-
upscale = upscaler(
|
459 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
460 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
461 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
@@ -521,13 +504,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
521 |
value=DEFAULT_STYLE_NAME,
|
522 |
label="Quality Style",
|
523 |
)
|
524 |
-
num_images = gr.Slider(
|
525 |
-
label="Number of Images",
|
526 |
-
minimum=1,
|
527 |
-
maximum=5,
|
528 |
-
step=1,
|
529 |
-
value=1,
|
530 |
-
)
|
531 |
with gr.Row():
|
532 |
with gr.Column(scale=1):
|
533 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
@@ -616,7 +592,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
616 |
guidance_scale,
|
617 |
num_inference_steps,
|
618 |
randomize_seed,
|
619 |
-
num_images,
|
620 |
denoise
|
621 |
],
|
622 |
outputs=[result, seed],
|
@@ -640,7 +615,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
640 |
guidance_scale,
|
641 |
num_inference_steps,
|
642 |
randomize_seed,
|
643 |
-
num_images,
|
644 |
denoise
|
645 |
],
|
646 |
outputs=[result, seed],
|
@@ -664,7 +638,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
664 |
guidance_scale,
|
665 |
num_inference_steps,
|
666 |
randomize_seed,
|
667 |
-
num_images,
|
668 |
denoise
|
669 |
],
|
670 |
outputs=[result, seed],
|
|
|
274 |
num_inference_steps: int = 125,
|
275 |
randomize_seed: bool = False,
|
276 |
use_resolution_binning: bool = True,
|
|
|
277 |
denoise: float = 0.3,
|
278 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
|
|
279 |
):
|
|
|
280 |
torch.backends.cudnn.benchmark = False
|
281 |
torch.cuda.empty_cache()
|
282 |
gc.collect()
|
|
|
286 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
287 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
288 |
options = {
|
289 |
+
"prompt": [prompt],
|
290 |
"negative_prompt": [negative_prompt],
|
291 |
"negative_prompt_2": [neg_prompt_2],
|
292 |
"strength": denoise,
|
|
|
304 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
305 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
306 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
|
307 |
+
batch_options = options.copy()
|
308 |
+
rv_image = images.extend(pipe(**batch_options).images[0])
|
309 |
+
sd_image_path = f"rv50_A_{seed}.png"
|
310 |
+
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
|
|
|
|
|
|
|
|
311 |
upload_to_ftp(sd_image_path)
|
312 |
+
image_paths = save_image(rv_image)
|
313 |
torch.cuda.empty_cache()
|
314 |
gc.collect()
|
315 |
torch.set_float32_matmul_precision("medium")
|
316 |
with torch.no_grad():
|
317 |
+
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
318 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
319 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
320 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
321 |
+
upload_to_ftp(downscale_path)
|
322 |
image_paths = [save_image(downscale1)]
|
323 |
return image_paths, seed
|
324 |
|
|
|
336 |
num_inference_steps: int = 250,
|
337 |
randomize_seed: bool = False,
|
338 |
use_resolution_binning: bool = True,
|
|
|
339 |
denoise: float = 0.3,
|
340 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
341 |
):
|
|
|
348 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
349 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
350 |
options = {
|
351 |
+
"prompt": [prompt],
|
352 |
"negative_prompt": [negative_prompt],
|
353 |
"negative_prompt_2": [neg_prompt_2],
|
354 |
"strength": denoise,
|
|
|
366 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
367 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
368 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
|
369 |
+
batch_options = options.copy()
|
370 |
+
rv_image = images.extend(pipe(**batch_options).images[0])
|
371 |
+
sd_image_path = f"rv50_A_{seed}.png"
|
372 |
+
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
|
|
|
|
|
|
|
|
373 |
upload_to_ftp(sd_image_path)
|
374 |
+
image_paths = save_image(rv_image)
|
375 |
torch.cuda.empty_cache()
|
376 |
gc.collect()
|
377 |
torch.set_float32_matmul_precision("medium")
|
378 |
with torch.no_grad():
|
379 |
+
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
380 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
381 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
382 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
383 |
+
upload_to_ftp(downscale_path)
|
384 |
image_paths = [save_image(downscale1)]
|
385 |
return image_paths, seed
|
386 |
|
|
|
398 |
num_inference_steps: int = 250,
|
399 |
randomize_seed: bool = False,
|
400 |
use_resolution_binning: bool = True,
|
|
|
401 |
denoise: float = 0.3,
|
402 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
403 |
):
|
|
|
410 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
411 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
412 |
options = {
|
413 |
+
"prompt": [prompt],
|
414 |
"negative_prompt": [negative_prompt],
|
415 |
"negative_prompt_2": [neg_prompt_2],
|
416 |
"strength": denoise,
|
|
|
428 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
429 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
430 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
|
431 |
+
batch_options = options.copy()
|
432 |
+
rv_image = images.extend(pipe(**batch_options).images[0])
|
|
|
|
|
|
|
|
|
433 |
sd_image_path = f"rv50_A_{seed}.png"
|
434 |
+
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
435 |
upload_to_ftp(sd_image_path)
|
436 |
+
image_paths = save_image(rv_image)
|
437 |
torch.cuda.empty_cache()
|
438 |
gc.collect()
|
439 |
torch.set_float32_matmul_precision("medium")
|
440 |
with torch.no_grad():
|
441 |
+
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
442 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
443 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
444 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
504 |
value=DEFAULT_STYLE_NAME,
|
505 |
label="Quality Style",
|
506 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
with gr.Row():
|
508 |
with gr.Column(scale=1):
|
509 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
|
|
592 |
guidance_scale,
|
593 |
num_inference_steps,
|
594 |
randomize_seed,
|
|
|
595 |
denoise
|
596 |
],
|
597 |
outputs=[result, seed],
|
|
|
615 |
guidance_scale,
|
616 |
num_inference_steps,
|
617 |
randomize_seed,
|
|
|
618 |
denoise
|
619 |
],
|
620 |
outputs=[result, seed],
|
|
|
638 |
guidance_scale,
|
639 |
num_inference_steps,
|
640 |
randomize_seed,
|
|
|
641 |
denoise
|
642 |
],
|
643 |
outputs=[result, seed],
|