Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,10 +18,10 @@ from typing import Tuple
|
|
18 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
19 |
import paramiko
|
20 |
|
21 |
-
os.system("chmod +x ./cusparselt.sh")
|
22 |
-
os.system("./cusparselt.sh")
|
23 |
-
os.system("chmod +x ./cudnn.sh")
|
24 |
-
os.system("./cudnn.sh")
|
25 |
|
26 |
torch.backends.cuda.matmul.allow_tf32 = False
|
27 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
@@ -109,14 +109,12 @@ def load_and_prepare_model(model_id):
|
|
109 |
"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,
|
110 |
}
|
111 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
112 |
-
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to('cuda')
|
113 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
114 |
model_id,
|
115 |
torch_dtype=torch.bfloat16,
|
116 |
-
use_safetensors=True,
|
117 |
add_watermarker=False,
|
118 |
vae=vae,
|
119 |
-
safety_checker=None,
|
120 |
)
|
121 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
122 |
pipe.to(torch.bfloat16)
|
@@ -161,8 +159,8 @@ def generate(
|
|
161 |
seed: int = 1,
|
162 |
width: int = 768,
|
163 |
height: int = 768,
|
164 |
-
guidance_scale: float =
|
165 |
-
num_inference_steps: int =
|
166 |
randomize_seed: bool = False,
|
167 |
use_resolution_binning: bool = True,
|
168 |
num_images: int = 1,
|
@@ -212,7 +210,7 @@ def generate_cpu(
|
|
212 |
width: int = 768,
|
213 |
height: int = 768,
|
214 |
guidance_scale: float = 5,
|
215 |
-
num_inference_steps: int =
|
216 |
randomize_seed: bool = False,
|
217 |
use_resolution_binning: bool = True,
|
218 |
num_images: int = 1,
|
@@ -359,14 +357,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
359 |
minimum=0.1,
|
360 |
maximum=6,
|
361 |
step=0.1,
|
362 |
-
value=
|
363 |
)
|
364 |
num_inference_steps = gr.Slider(
|
365 |
label="Number of inference steps",
|
366 |
minimum=10,
|
367 |
maximum=1000,
|
368 |
step=10,
|
369 |
-
value=
|
370 |
)
|
371 |
|
372 |
gr.Examples(
|
|
|
18 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
19 |
import paramiko
|
20 |
|
21 |
+
#os.system("chmod +x ./cusparselt.sh")
|
22 |
+
#os.system("./cusparselt.sh")
|
23 |
+
#os.system("chmod +x ./cudnn.sh")
|
24 |
+
#os.system("./cudnn.sh")
|
25 |
|
26 |
torch.backends.cuda.matmul.allow_tf32 = False
|
27 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
109 |
"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,
|
110 |
}
|
111 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
112 |
+
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to(torch.bfloat16).to('cuda')
|
113 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
114 |
model_id,
|
115 |
torch_dtype=torch.bfloat16,
|
|
|
116 |
add_watermarker=False,
|
117 |
vae=vae,
|
|
|
118 |
)
|
119 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
120 |
pipe.to(torch.bfloat16)
|
|
|
159 |
seed: int = 1,
|
160 |
width: int = 768,
|
161 |
height: int = 768,
|
162 |
+
guidance_scale: float = 4.2,
|
163 |
+
num_inference_steps: int = 250,
|
164 |
randomize_seed: bool = False,
|
165 |
use_resolution_binning: bool = True,
|
166 |
num_images: int = 1,
|
|
|
210 |
width: int = 768,
|
211 |
height: int = 768,
|
212 |
guidance_scale: float = 5,
|
213 |
+
num_inference_steps: int = 250,
|
214 |
randomize_seed: bool = False,
|
215 |
use_resolution_binning: bool = True,
|
216 |
num_images: int = 1,
|
|
|
357 |
minimum=0.1,
|
358 |
maximum=6,
|
359 |
step=0.1,
|
360 |
+
value=4.2,
|
361 |
)
|
362 |
num_inference_steps = gr.Slider(
|
363 |
label="Number of inference steps",
|
364 |
minimum=10,
|
365 |
maximum=1000,
|
366 |
step=10,
|
367 |
+
value=250,
|
368 |
)
|
369 |
|
370 |
gr.Examples(
|