Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -113,8 +113,8 @@ def load_and_prepare_model():
|
|
113 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
114 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
115 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
116 |
-
|
117 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
118 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
119 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
120 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
@@ -130,7 +130,6 @@ def load_and_prepare_model():
|
|
130 |
token=HF_TOKEN,
|
131 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
132 |
#use_safetensors=True,
|
133 |
-
# use_auth_token=HF_TOKEN,
|
134 |
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
135 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
136 |
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
@@ -232,7 +231,7 @@ def randomize_seed_fn() -> int:
|
|
232 |
seed = random.randint(0, MAX_SEED)
|
233 |
return seed
|
234 |
|
235 |
-
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp
|
236 |
filename= f'tst_A_{timestamp}.txt'
|
237 |
with open(filename, "w") as f:
|
238 |
f.write(f"Realvis 5.0 (Tester A) \n")
|
@@ -240,7 +239,6 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise):
|
|
240 |
f.write(f"Prompt: {prompt} \n")
|
241 |
f.write(f"Steps: {num_inference_steps} \n")
|
242 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
243 |
-
f.write(f"Denoise Strength: {denoise} \n")
|
244 |
f.write(f"SPACE SETUP: \n")
|
245 |
f.write(f"Use Model Dtype: no \n")
|
246 |
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
@@ -263,7 +261,6 @@ def generate_30(
|
|
263 |
guidance_scale: float = 4,
|
264 |
num_inference_steps: int = 125,
|
265 |
use_resolution_binning: bool = True,
|
266 |
-
denoise: float = 0.3,
|
267 |
lora_scale: float = 0.5,
|
268 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
269 |
):
|
@@ -276,7 +273,6 @@ def generate_30(
|
|
276 |
"prompt": [prompt],
|
277 |
"negative_prompt": [negative_prompt],
|
278 |
"negative_prompt_2": [neg_prompt_2],
|
279 |
-
"strength": denoise,
|
280 |
"width": width,
|
281 |
"height": height,
|
282 |
"guidance_scale": guidance_scale,
|
@@ -290,7 +286,7 @@ def generate_30(
|
|
290 |
images = []
|
291 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
292 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
293 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp
|
294 |
batch_options = options.copy()
|
295 |
rv_image = pipe(**batch_options).images[0]
|
296 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
@@ -321,7 +317,6 @@ def generate_60(
|
|
321 |
guidance_scale: float = 4,
|
322 |
num_inference_steps: int = 250,
|
323 |
use_resolution_binning: bool = True,
|
324 |
-
denoise: float = 0.3,
|
325 |
lora_scale: float = 0.5,
|
326 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
327 |
):
|
@@ -334,7 +329,6 @@ def generate_60(
|
|
334 |
"prompt": [prompt],
|
335 |
"negative_prompt": [negative_prompt],
|
336 |
"negative_prompt_2": [neg_prompt_2],
|
337 |
-
"strength": denoise,
|
338 |
"width": width,
|
339 |
"height": height,
|
340 |
"guidance_scale": guidance_scale,
|
@@ -348,7 +342,7 @@ def generate_60(
|
|
348 |
images = []
|
349 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
350 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
351 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp
|
352 |
batch_options = options.copy()
|
353 |
rv_image = pipe(**batch_options).images[0]
|
354 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
@@ -379,7 +373,6 @@ def generate_90(
|
|
379 |
guidance_scale: float = 4,
|
380 |
num_inference_steps: int = 250,
|
381 |
use_resolution_binning: bool = True,
|
382 |
-
denoise: float = 0.3,
|
383 |
lora_scale: float = 0.5,
|
384 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
385 |
):
|
@@ -392,7 +385,6 @@ def generate_90(
|
|
392 |
"prompt": [prompt],
|
393 |
"negative_prompt": [negative_prompt],
|
394 |
"negative_prompt_2": [neg_prompt_2],
|
395 |
-
"strength": denoise,
|
396 |
"width": width,
|
397 |
"height": height,
|
398 |
"guidance_scale": guidance_scale,
|
@@ -406,7 +398,7 @@ def generate_90(
|
|
406 |
images = []
|
407 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
408 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
409 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp
|
410 |
batch_options = options.copy()
|
411 |
rv_image = pipe(**batch_options).images[0]
|
412 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
@@ -494,13 +486,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
494 |
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
|
495 |
visible=True,
|
496 |
)
|
497 |
-
denoise = gr.Slider(
|
498 |
-
label="Denoising Strength",
|
499 |
-
minimum=0.0,
|
500 |
-
maximum=1.0,
|
501 |
-
step=0.01,
|
502 |
-
value=0.3,
|
503 |
-
)
|
504 |
lora_scale = gr.Slider(
|
505 |
label="LORA Scale (Skin)",
|
506 |
minimum=0.0,
|
@@ -568,7 +553,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
568 |
height,
|
569 |
guidance_scale,
|
570 |
num_inference_steps,
|
571 |
-
denoise,
|
572 |
lora_scale,
|
573 |
],
|
574 |
outputs=[result],
|
@@ -590,7 +574,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
590 |
height,
|
591 |
guidance_scale,
|
592 |
num_inference_steps,
|
593 |
-
denoise,
|
594 |
lora_scale,
|
595 |
],
|
596 |
outputs=[result],
|
@@ -612,7 +595,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
612 |
height,
|
613 |
guidance_scale,
|
614 |
num_inference_steps,
|
615 |
-
denoise,
|
616 |
lora_scale,
|
617 |
],
|
618 |
outputs=[result],
|
|
|
113 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
114 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
115 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
116 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
117 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
118 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
119 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
120 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
|
|
130 |
token=HF_TOKEN,
|
131 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
132 |
#use_safetensors=True,
|
|
|
133 |
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
134 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
135 |
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
|
|
231 |
seed = random.randint(0, MAX_SEED)
|
232 |
return seed
|
233 |
|
234 |
+
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
235 |
filename= f'tst_A_{timestamp}.txt'
|
236 |
with open(filename, "w") as f:
|
237 |
f.write(f"Realvis 5.0 (Tester A) \n")
|
|
|
239 |
f.write(f"Prompt: {prompt} \n")
|
240 |
f.write(f"Steps: {num_inference_steps} \n")
|
241 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
|
|
242 |
f.write(f"SPACE SETUP: \n")
|
243 |
f.write(f"Use Model Dtype: no \n")
|
244 |
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
|
|
261 |
guidance_scale: float = 4,
|
262 |
num_inference_steps: int = 125,
|
263 |
use_resolution_binning: bool = True,
|
|
|
264 |
lora_scale: float = 0.5,
|
265 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
266 |
):
|
|
|
273 |
"prompt": [prompt],
|
274 |
"negative_prompt": [negative_prompt],
|
275 |
"negative_prompt_2": [neg_prompt_2],
|
|
|
276 |
"width": width,
|
277 |
"height": height,
|
278 |
"guidance_scale": guidance_scale,
|
|
|
286 |
images = []
|
287 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
288 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
289 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
290 |
batch_options = options.copy()
|
291 |
rv_image = pipe(**batch_options).images[0]
|
292 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
|
|
317 |
guidance_scale: float = 4,
|
318 |
num_inference_steps: int = 250,
|
319 |
use_resolution_binning: bool = True,
|
|
|
320 |
lora_scale: float = 0.5,
|
321 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
322 |
):
|
|
|
329 |
"prompt": [prompt],
|
330 |
"negative_prompt": [negative_prompt],
|
331 |
"negative_prompt_2": [neg_prompt_2],
|
|
|
332 |
"width": width,
|
333 |
"height": height,
|
334 |
"guidance_scale": guidance_scale,
|
|
|
342 |
images = []
|
343 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
344 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
345 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
346 |
batch_options = options.copy()
|
347 |
rv_image = pipe(**batch_options).images[0]
|
348 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
|
|
373 |
guidance_scale: float = 4,
|
374 |
num_inference_steps: int = 250,
|
375 |
use_resolution_binning: bool = True,
|
|
|
376 |
lora_scale: float = 0.5,
|
377 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
378 |
):
|
|
|
385 |
"prompt": [prompt],
|
386 |
"negative_prompt": [negative_prompt],
|
387 |
"negative_prompt_2": [neg_prompt_2],
|
|
|
388 |
"width": width,
|
389 |
"height": height,
|
390 |
"guidance_scale": guidance_scale,
|
|
|
398 |
images = []
|
399 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
400 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
401 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
402 |
batch_options = options.copy()
|
403 |
rv_image = pipe(**batch_options).images[0]
|
404 |
sd_image_path = f"rv50_A_{timestamp}.png"
|
|
|
486 |
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
|
487 |
visible=True,
|
488 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
lora_scale = gr.Slider(
|
490 |
label="LORA Scale (Skin)",
|
491 |
minimum=0.0,
|
|
|
553 |
height,
|
554 |
guidance_scale,
|
555 |
num_inference_steps,
|
|
|
556 |
lora_scale,
|
557 |
],
|
558 |
outputs=[result],
|
|
|
574 |
height,
|
575 |
guidance_scale,
|
576 |
num_inference_steps,
|
|
|
577 |
lora_scale,
|
578 |
],
|
579 |
outputs=[result],
|
|
|
595 |
height,
|
596 |
guidance_scale,
|
597 |
num_inference_steps,
|
|
|
598 |
lora_scale,
|
599 |
],
|
600 |
outputs=[result],
|