ford442 commited on
Commit
e6139ab
·
verified ·
1 Parent(s): 9a63c3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -115,8 +115,8 @@ def load_and_prepare_model():
115
  #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
116
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
117
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
118
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
119
- sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear",token=HF_TOKEN)
120
  #sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
121
  #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
122
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
@@ -278,7 +278,7 @@ def generate_30(
278
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
279
  ):
280
  torch.set_default_device('cuda')
281
- pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
282
  seed = int(randomize_seed_fn())
283
  generator = torch.Generator(device='cuda').manual_seed(seed)
284
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
@@ -333,8 +333,8 @@ def generate_60(
333
  lora_scale: float = 0.5,
334
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
335
  ):
336
- torch.set_default_device('cuda')
337
- pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
338
  seed = int(randomize_seed_fn())
339
  generator = torch.Generator(device='cuda').manual_seed(seed)
340
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
@@ -389,8 +389,8 @@ def generate_90(
389
  lora_scale: float = 0.5,
390
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
391
  ):
392
- torch.set_default_device('cuda')
393
- pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
394
  seed = int(randomize_seed_fn())
395
  generator = torch.Generator(device='cuda').manual_seed(seed)
396
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
 
115
  #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
116
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
117
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
118
+ sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
119
+ #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear")
120
  #sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
121
  #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
122
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
 
278
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
279
  ):
280
  torch.set_default_device('cuda')
281
+ #pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
282
  seed = int(randomize_seed_fn())
283
  generator = torch.Generator(device='cuda').manual_seed(seed)
284
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
 
333
  lora_scale: float = 0.5,
334
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
335
  ):
336
+ #torch.set_default_device('cuda')
337
+ #pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
338
  seed = int(randomize_seed_fn())
339
  generator = torch.Generator(device='cuda').manual_seed(seed)
340
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
 
389
  lora_scale: float = 0.5,
390
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
391
  ):
392
+ #torch.set_default_device('cuda')
393
+ #pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
394
  seed = int(randomize_seed_fn())
395
  generator = torch.Generator(device='cuda').manual_seed(seed)
396
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)