Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -115,8 +115,8 @@ def load_and_prepare_model():
|
|
115 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
116 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
117 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
118 |
-
|
119 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear"
|
120 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
121 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
122 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
@@ -278,7 +278,7 @@ def generate_30(
|
|
278 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
279 |
):
|
280 |
torch.set_default_device('cuda')
|
281 |
-
pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
282 |
seed = int(randomize_seed_fn())
|
283 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
284 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -333,8 +333,8 @@ def generate_60(
|
|
333 |
lora_scale: float = 0.5,
|
334 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
335 |
):
|
336 |
-
torch.set_default_device('cuda')
|
337 |
-
pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
338 |
seed = int(randomize_seed_fn())
|
339 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
340 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -389,8 +389,8 @@ def generate_90(
|
|
389 |
lora_scale: float = 0.5,
|
390 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
391 |
):
|
392 |
-
torch.set_default_device('cuda')
|
393 |
-
pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
394 |
seed = int(randomize_seed_fn())
|
395 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
396 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
115 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
116 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
117 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
118 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
|
119 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear")
|
120 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
121 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
122 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
|
|
278 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
279 |
):
|
280 |
torch.set_default_device('cuda')
|
281 |
+
#pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
282 |
seed = int(randomize_seed_fn())
|
283 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
284 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
333 |
lora_scale: float = 0.5,
|
334 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
335 |
):
|
336 |
+
#torch.set_default_device('cuda')
|
337 |
+
#pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
338 |
seed = int(randomize_seed_fn())
|
339 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
340 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
389 |
lora_scale: float = 0.5,
|
390 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
391 |
):
|
392 |
+
#torch.set_default_device('cuda')
|
393 |
+
#pipe.set_adapters(["skin"], adapter_weights=[lora_scale])
|
394 |
seed = int(randomize_seed_fn())
|
395 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
396 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|