Spaces:
Sleeping
Sleeping
File size: 35,405 Bytes
51c53aa eee7a65 35e1586 51c53aa 4d9cbac 66387cc 95a7e5a 35e1586 9b2f654 31bad44 35e1586 51c53aa 35e1586 51c53aa eee7a65 2d991dc 51c53aa 504482b 51c53aa 1dbb3fe caf6178 ce93ad2 95a7e5a 554b5f1 31bad44 554b5f1 95a7e5a 26493ce 95a7e5a 504482b 4d9cbac 504482b 26493ce 504482b 31bad44 eee7a65 31bad44 3b1c99a 31bad44 9b2f654 f377404 9b2f654 31bad44 ae8a4eb 31bad44 51c53aa 9b2f654 eee7a65 31bad44 9b2f654 51c53aa 31bad44 9b2f654 eee7a65 31bad44 9b2f654 31bad44 eee7a65 3b1c99a 31bad44 eee7a65 134d152 7becdb7 51c53aa 9b2f654 b2bdaba 51c53aa b2bdaba 51c53aa 9b2f654 134d152 51c53aa 1dbb3fe 66387cc 1dbb3fe 51c53aa 1dbb3fe 9b2f654 f377404 2d991dc 7becdb7 9b2f654 66387cc 1dbb3fe 51c53aa f377404 51c53aa eee7a65 51c53aa f377404 51c53aa eee7a65 f377404 eee7a65 35e1586 66387cc f377404 66387cc f377404 66387cc f377404 cb1deeb 31bad44 88b8fb2 ae8a4eb 14a2032 88b8fb2 51c53aa ab03b3c 51c53aa f377404 51c53aa f377404 66387cc 4d9cbac 51c53aa 66387cc 51c53aa f377404 51c53aa f377404 51c53aa 31bad44 51c53aa 88b8fb2 51c53aa 88b8fb2 51c53aa 88b8fb2 51c53aa 88b8fb2 ce5befa 88b8fb2 4c3ed6c 88b8fb2 4c78737 88b8fb2 51c53aa 88b8fb2 51c53aa 88b8fb2 d73cf44 88b8fb2 51c53aa 6a8df74 71d970d 51c53aa 88b8fb2 51c53aa 88b8fb2 3f1c09a 88b8fb2 cbc773f 51c53aa 88b8fb2 cbc773f 88b8fb2 cbc773f 88b8fb2 51c53aa 88b8fb2 51c53aa 88b8fb2 cbc773f 88b8fb2 cbc773f 51c53aa 88b8fb2 51c53aa 88b8fb2 60aab5b f99fa06 9662e15 60aab5b 55e9424 60aab5b cbc773f 60aab5b daacd5c 95a7e5a 31bad44 f377404 95a7e5a 35e1586 504482b eee7a65 504482b 6c38ae6 12bd822 6c38ae6 12bd822 6c38ae6 12bd822 6c38ae6 12bd822 6c38ae6 504482b 12bd822 504482b f377404 504482b c883301 6c38ae6 4d9cbac c883301 51eb727 c883301 4d9cbac e7b63de c883301 e7b63de c883301 267e23d c883301 6c38ae6 c883301 6c38ae6 c883301 bec2678 dc6ba19 504482b 28f8ba5 66387cc 28f8ba5 6c38ae6 28f8ba5 66387cc 28f8ba5 6c38ae6 28f8ba5 6c38ae6 28f8ba5 504482b 28f8ba5 abb873f 28f8ba5 eee7a65 28f8ba5 35e1586 31bad44 f377404 eee7a65 95a7e5a 31bad44 95a7e5a d57edda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
import transformers
import pickle
import os
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline,
Qwen2Tokenizer,
BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import List, Dict, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
nltk.download('punkt_tab')
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables for models and data
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 1
class MedicalProfile(BaseModel):
conditions: str
daily_symptoms: str
class ChatQuery(BaseModel):
query: str
language_code: int = 1
conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
def init_nltk():
"""Initialize NLTK resources"""
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
"""Initialize all required models"""
try:
print("Loading models...")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
# Embedding models
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
# Translation models
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
#Attention model
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
# NER model
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
# LLM model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
# Locate or download embeddings file
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
# Initialize a dictionary to store embeddings
embeddings = {}
# Open the safetensors file
with safe_open(embeddings_path, framework="pt") as f:
keys = f.keys()
#0print(f"Available keys in the .safetensors file: {list(keys)}") # Debugging info
# Iterate over the keys and load tensors
for key in keys:
try:
tensor = f.get_tensor(key)
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
# Convert tensor to NumPy array
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print("Embeddings successfully loaded.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_recipes_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
# Locate or download the embeddings file
embeddings_path = 'recipes_embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
# Initialize a dictionary to store embeddings
embeddings = {}
# Open the safetensors file
with safe_open(embeddings_path, framework="pt") as f:
keys = list(f.keys())
#print(f"Available keys in the .safetensors file: {keys}") # Debugging info
# Iterate over the keys and load tensors
for key in keys:
try:
tensor = f.get_tensor(key) # Get the tensor associated with the key
if tensor.shape[0] != 384: # Optional: Validate tensor shape
print(f"Warning: Tensor for key {key} has unexpected shape {tensor.shape}")
# Convert tensor to NumPy array
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print(f"Successfully loaded {len(embeddings)} embeddings.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
"""Load document data from HTML articles in a specified folder."""
try:
print("Loading documents data...")
# Check if the folder exists
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found")
return False
# List all HTML files in the folder
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
if not html_files:
print(f"No HTML files found in folder '{folder_path}'")
return False
documents = []
# Iterate through each HTML file and parse the content
for file_name in html_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
# Parse the HTML file
soup = BeautifulSoup(file, 'html.parser')
# Extract text content (or customize this as per your needs)
text = soup.get_text(separator='\n').strip()
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading file {file_name}: {e}")
# Convert the list of documents to a DataFrame
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading documents data: {e}")
data['df'] = pd.DataFrame()
return False
def load_recipes_data(folder_path='pdf kb.zip'):
try:
print("Loading documents data...")
temp_dir = None
# Handle .zip file
if folder_path.endswith('.zip'):
if not os.path.exists(folder_path):
print(f"Error: .zip file '{folder_path}' not found.")
return False
# Create a temporary directory for extracting the .zip
temp_dir = tempfile.TemporaryDirectory()
extract_path = temp_dir.name
# Extract the .zip file
try:
with zipfile.ZipFile(folder_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
print(f"Extracted .zip file to temporary folder: {extract_path}")
except Exception as e:
print(f"Error extracting .zip file: {e}")
return False
# Update the folder_path to the extracted directory
folder_path = extract_path
# Check if the folder exists
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found.")
return False
# List all HTML or PDF files in the folder
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
pdf_files = [f for f in os.listdir(folder_path) if f.endswith('.pdf')]
if not html_files and not pdf_files:
print(f"No HTML or PDF files found in folder '{folder_path}'.")
return False
documents = []
# Process PDF files (requires a PDF parser like PyPDF2)
for file_name in pdf_files:
file_path = os.path.join(folder_path, file_name)
try:
from PyPDF2 import PdfReader # Import here to avoid dependency issues
reader = PdfReader(file_path)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading PDF file {file_name}: {e}")
# Convert the list of documents to a DataFrame
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading documents data: {e}")
data['df'] = pd.DataFrame()
return False
finally:
# Clean up the temporary directory, if created
if temp_dir:
temp_dir.cleanup()
def load_data():
"""Load all required data"""
embeddings_success = load_embeddings()
documents_success = load_documents_data()
recipes_success = load_recipes_data()
recipes_embeddings_success = load_recipes_embeddings()
if not recipes_embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not recipes_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
# Initialize application
print("Initializing application...")
init_success = load_models() and load_data()
def translate_text(text, source_to_target='ar_to_en'):
"""Translate text between Arabic and English"""
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
embedding = models['embedding_model']
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data=None, n_results=5):
embeddings_data = load_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def query_recipes_embeddings(query_embedding, embeddings_data=None, n_results=5):
embeddings_data = load_recipes_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
# Check if the file exists
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
texts.append("")
continue
# Read and parse the HTML file
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
texts.append("")
return texts
def retrieve_recipes_texts(doc_ids, zip_path='pdf kb.zip'):
texts = []
try:
# Check if the .zip file exists
if not os.path.exists(zip_path):
print(f"Error: Zip file not found at '{zip_path}'")
return ["" for _ in doc_ids]
# Create a temporary directory to extract the .zip contents
with tempfile.TemporaryDirectory() as temp_dir:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir) # Extract all files to the temp directory
# Iterate through the document IDs
for doc_id in doc_ids:
# Construct the expected PDF file path
pdf_path = os.path.join(temp_dir, f"{doc_id}.pdf")
try:
# Check if the PDF file exists
if not os.path.exists(pdf_path):
print(f"Warning: PDF file not found: {pdf_path}")
texts.append("")
continue
# Read and extract text from the PDF
with open(pdf_path, 'rb') as pdf_file:
reader = PdfReader(pdf_file)
pdf_text = ""
for page in reader.pages:
pdf_text += page.extract_text()
# Add the extracted text to the result list
texts.append(pdf_text.strip())
except Exception as e:
print(f"Error retrieving text from document {doc_id}: {e}")
texts.append("")
except Exception as e:
print(f"Error handling zip file: {e}")
return ["" for _ in doc_ids]
return texts
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
try:
# Prepare pairs for the cross-encoder
pairs = [(query, doc) for doc in document_texts]
# Get scores using the cross-encoder model
scores = cross_encoder_model.predict(pairs)
# Combine scores with document IDs and texts
scored_documents = list(zip(scores, document_ids, document_texts))
# Sort by scores in descending order
scored_documents.sort(key=lambda x: x[0], reverse=True)
# Print reranked results
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
return scored_documents
except Exception as e:
print(f"Error reranking documents: {e}")
return []
def extract_entities(text, ner_pipeline=None):
try:
# Use the provided pipeline or default to the model dictionary
if ner_pipeline is None:
ner_pipeline = models['ner_pipeline']
# Perform NER using the pipeline
ner_results = ner_pipeline(text)
# Extract unique entities that start with "B-"
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
return list(entities)
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def match_entities(query_entities, sentence_entities):
try:
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
except Exception as e:
print(f"Error matching entities: {e}")
return 0
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=1):
relevant_portions = {}
# Extract entities from the query
query_entities = extract_entities(query)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text) # Split document into sentences
doc_relevant_portions = []
# Extract entities from the entire document
#ner_biobert = models['ner_pipeline']
doc_entities = extract_entities(doc_text)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
# Extract entities from the sentence
sentence_entities = extract_entities(sentence)
# Compute relevance score
relevance_score = match_entities(query_entities, sentence_entities)
# Select sentences with at least `min_query_words` matching entities
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
# Fallback: Include most entity-dense sentences if no relevant portions were found
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
# Add the extracted portions to the result dictionary
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
def extract_entities(text):
try:
biobert_tokenizer = models['bio_tokenizer']
biobert_model = models['bio_model']
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [
tokens[i]
for i in range(len(tokens))
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity
]
return entities
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def enhance_passage_with_entities(passage, entities):
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
tokenizer_f = models['llm_tokenizer']
model_f = models['llm_model']
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
# Start timing
#start_time = time.time()
# Generate the output
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
# End timing
#end_time = time.time()
# Calculate the duration
#duration = end_time - start_time
# Decode the answer
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
# Extract keywords from the passage and answer
passage_keywords = set(prompt.lower().split()) # Adjusted to check keywords in the full prompt
answer_keywords = set(answer.lower().split())
# Verify if the answer aligns with the passage
if passage_keywords.intersection(answer_keywords):
return answer #, duration
else:
return "Sorry, I can't help with that." #, duration
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix, 1)[-1].strip() # Split only once to avoid splitting at other occurrences of "Answer:"
return text
def remove_incomplete_sentence(text):
# Check if the text ends with a period
if not text.endswith('.'):
# Find the last period or the end of the string
last_period_index = text.rfind('.')
if last_period_index != -1:
# Remove everything after the last period
return text[:last_period_index + 1].strip()
return text
language_code = 1
query_text = 'What are symptoms of heart attack ?'
query_embedding = embed_query_text(query_text) # Embed the query text
embeddings_data = load_embeddings ()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
document_ids = [doc_id for doc_id, _ in initial_results]
print(document_ids)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
# Rerank the results using the CrossEncoder
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id}")
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
for doc_id, portions in relevant_portions.items():
print(f"{doc_id}: {portions}")
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
# Remove duplicate portions
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
# Combine the unique parts into a single string of context
combined_parts = " ".join(unique_selected_parts)
# Construct context as a list: first the query, then the unique selected portions
context = [query_text] + unique_selected_parts
# Print the context (query + relevant portions)
print(context)
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
# Generate answer with the enhanced passage
prompt = create_prompt(query_text, passage)
answer = generate_answer(prompt)
#print(f"\nTime taken to generate the answer: {generation_time:.2f} seconds")
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
@app.get("/")
async def root():
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
query_text = chat_query.query
language_code = chat_query.language_code
query_embedding = embed_query_text(query_text) # Embed the query text
embeddings_data = load_embeddings ()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
combined_parts = " ".join(unique_selected_parts)
context = [query_text] + unique_selected_parts
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
answer = generate_answer(prompt)
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {
"response": final_answer,
"conversation_id": chat_query.conversation_id,
"success": True
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
# Build the query text
query_text = profile.conditions + " " + profile.daily_symptoms
# Generate the query embedding
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
# Load embeddings and retrieve initial results
embeddings_data = load_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=6)
if not initial_results:
raise ValueError("No relevant documents found.")
# Extract document IDs
document_ids = [doc_id for doc_id, _ in initial_results]
# Load document metadata (URL mappings)
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
# Map file names to original URLs
resources = []
for file_name in document_ids:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url) or "Unknown Title"
resources.append({"file_name": file_name, "title": title, "url": original_url})
else:
resources.append({"file_name": file_name, "title": "Unknown", "url": None})
# Retrieve document texts
document_texts = retrieve_document_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
# Perform re-ranking
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores] # Convert to native Python float
# Combine scores with resources
for i, resource in enumerate(resources):
resource["score"] = scores[i] if i < len(scores) else 0.0
# Sort resources by score
resources.sort(key=lambda x: x["score"], reverse=True)
# Limit response to top 5 resources
return {"resources": resources[:5], "success": True}
except ValueError as ve:
# Handle expected errors
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle unexpected errors
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
# Build the query text for recipes
recipe_query = (
f"Recipes and meals suitable for someone with: "
f"{profile.conditions} and experiencing {profile.daily_symptoms}"
)
query_text = recipe_query
# Generate the query embedding
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
# Load embeddings and retrieve initial results
embeddings_data = load_recipes_embeddings()
folder_path = 'pdf kb.zip'
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
if not initial_results:
raise ValueError("No relevant recipes found.")
# Extract document IDs
document_ids = [doc_id for doc_id, _ in initial_results]
# Retrieve document texts
document_texts = retrieve_recipes_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
# Perform re-ranking with cross-encoder
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores] # Convert scores to native floats
# Combine document data
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True) # Sort by score
# Load recipe metadata from DataFrame
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
# Prepare the final recipes list
recipes = []
for score, doc_id, text in scored_documents:
# Retrieve metadata for the document
doc_info = df[df['Unnamed: 0'] == doc_id]
if not doc_info.empty:
title = doc_info.iloc[0]['title'] if 'title' in doc_info.columns else "Unknown Title"
if 'recipe' in text.lower() or 'meal' in text.lower():
recipes.append({
"id": doc_id,
"title": title,
"content_preview": text[:200], # First 200 characters of text
"score": score,
})
# Limit the response to top 5 recipes
return {"recipes": recipes[:10], "success": True}
except ValueError as ve:
# Handle expected errors
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle unexpected errors
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if not init_success:
print("Warning: Application initialized with partial functionality")
# For running locally
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|