Spaces:
Sleeping
Sleeping
Commit
·
60aab5b
1
Parent(s):
de43d0e
Update app.py
Browse files
app.py
CHANGED
@@ -424,6 +424,69 @@ def remove_incomplete_sentence(text):
|
|
424 |
return text[:last_period_index + 1].strip()
|
425 |
return text
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
@app.get("/")
|
428 |
async def root():
|
429 |
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
|
|
|
424 |
return text[:last_period_index + 1].strip()
|
425 |
return text
|
426 |
|
427 |
+
|
428 |
+
language_code = 1
|
429 |
+
query_text = 'What are symptoms of heart attack ?'
|
430 |
+
query_embedding = embed_query_text(query_text) # Embed the query text
|
431 |
+
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
|
432 |
+
document_ids = [doc_id for doc_id, _ in initial_results]
|
433 |
+
print(document_ids)
|
434 |
+
document_ids = [doc_id for doc_id, _ in initial_results]
|
435 |
+
document_texts = retrieve_document_texts(document_ids, folder_path)
|
436 |
+
|
437 |
+
# Rerank the results using the CrossEncoder
|
438 |
+
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
|
439 |
+
scored_documents = list(zip(scores, document_ids, document_texts))
|
440 |
+
scored_documents.sort(key=lambda x: x[0], reverse=True)
|
441 |
+
print("Reranked results:")
|
442 |
+
for idx, (score, doc_id, doc) in enumerate(scored_documents):
|
443 |
+
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id}")
|
444 |
+
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
|
445 |
+
|
446 |
+
for doc_id, portions in relevant_portions.items():
|
447 |
+
print(f"{doc_id}: {portions}")
|
448 |
+
|
449 |
+
flattened_relevant_portions = []
|
450 |
+
for doc_id, portions in relevant_portions.items():
|
451 |
+
flattened_relevant_portions.extend(portions)
|
452 |
+
|
453 |
+
# Remove duplicate portions
|
454 |
+
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
|
455 |
+
|
456 |
+
# Combine the unique parts into a single string of context
|
457 |
+
combined_parts = " ".join(unique_selected_parts)
|
458 |
+
|
459 |
+
# Construct context as a list: first the query, then the unique selected portions
|
460 |
+
context = [query_text] + unique_selected_parts
|
461 |
+
|
462 |
+
# Print the context (query + relevant portions)
|
463 |
+
print(context)
|
464 |
+
entities = extract_entities(query_text)
|
465 |
+
passage = enhance_passage_with_entities(combined_parts, entities)
|
466 |
+
# Generate answer with the enhanced passage
|
467 |
+
prompt = create_prompt(query_text, passage)
|
468 |
+
answer, generation_time = generate_answer(prompt)
|
469 |
+
print(f"\nTime taken to generate the answer: {generation_time:.2f} seconds")
|
470 |
+
answer_part = answer.split("Answer:")[-1].strip()
|
471 |
+
cleaned_answer = remove_answer_prefix(answer_part)
|
472 |
+
final_answer = remove_incomplete_sentence(cleaned_answer)
|
473 |
+
|
474 |
+
if language_code == 0:
|
475 |
+
final_answer = translate_en_to_ar(final_answer)
|
476 |
+
|
477 |
+
if final_answer:
|
478 |
+
print("Answer:")
|
479 |
+
print(final_answer)
|
480 |
+
else:
|
481 |
+
print("Sorry, I can't help with that.")
|
482 |
+
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
@app.get("/")
|
491 |
async def root():
|
492 |
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
|