File size: 19,066 Bytes
6c02161
b2d8a8c
15059e3
b2d8a8c
 
6df3b9e
649509e
60eb847
51043fd
 
5e9d470
 
 
 
 
b2d8a8c
5e9d470
6b78ccb
 
 
 
2936f7d
6b78ccb
98d025d
5e9d470
15059e3
c022c1a
 
472d32d
c022c1a
 
 
9df60ba
c022c1a
15059e3
5e9d470
c022c1a
9df60ba
5e9d470
472d32d
 
 
 
 
 
 
22e7225
5e9d470
 
 
 
44d4a2f
5e9d470
6b78ccb
 
649509e
6b78ccb
649509e
 
01bd804
649509e
0d14459
a96918a
dbb603e
01bd804
5e9d470
a02a3fd
649509e
5e9d470
649509e
15059e3
2936f7d
0d14459
 
a96918a
5e9d470
 
 
 
 
15059e3
5e9d470
 
 
fa7e403
5e9d470
a96918a
 
5e9d470
 
10f6d5f
5e9d470
 
 
a96918a
 
858dd79
5e9d470
 
 
 
858dd79
5e9d470
 
310cc12
5e9d470
310cc12
a96918a
5e9d470
 
 
 
 
 
 
 
 
 
a96918a
10f6d5f
5e9d470
 
e6c9d72
44d4a2f
5e9d470
44d4a2f
 
5e9d470
24d1064
 
5e9d470
24d1064
 
 
 
 
5e9d470
24d1064
 
5e9d470
24d1064
 
 
 
 
5e9d470
24d1064
5e9d470
 
 
 
 
 
 
 
 
44d4a2f
5e9d470
44d4a2f
 
5e9d470
 
 
44d4a2f
 
 
5e9d470
 
44d4a2f
 
5e9d470
 
 
 
 
 
 
 
 
 
44d4a2f
 
 
5e9d470
44d4a2f
5e9d470
 
44d4a2f
 
 
5e9d470
 
44d4a2f
5e9d470
 
44d4a2f
5e9d470
 
 
 
 
44d4a2f
5e9d470
 
 
 
 
 
 
 
 
44d4a2f
5e9d470
44d4a2f
5e9d470
44d4a2f
 
5e9d470
 
 
44d4a2f
 
 
 
 
 
 
 
5e9d470
 
 
 
 
 
44d4a2f
 
 
5e9d470
 
 
44d4a2f
5e9d470
 
 
 
b1201e2
44d4a2f
 
5e9d470
44d4a2f
5e9d470
 
44d4a2f
5e9d470
 
 
 
 
 
 
 
44d4a2f
 
5e9d470
 
 
 
 
 
 
 
 
 
 
 
44d4a2f
 
5e9d470
44d4a2f
 
 
5e9d470
44d4a2f
5e9d470
44d4a2f
5e9d470
 
 
 
 
 
44d4a2f
5e9d470
24d1064
5e9d470
44d4a2f
24d1064
5e9d470
 
 
 
 
 
44d4a2f
5e9d470
24d1064
5e9d470
 
 
24d1064
310cc12
5e9d470
310cc12
 
 
5e9d470
 
 
 
 
 
 
24d1064
310cc12
5e9d470
24d1064
310cc12
5e9d470
24d1064
649509e
5e9d470
 
 
 
 
 
 
193bc92
5bb3bd1
5e9d470
193bc92
a96918a
 
649509e
5e9d470
649509e
 
 
5e9d470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
 
 
 
5bb3bd1
193bc92
649509e
24d1064
 
 
 
649509e
 
15059e3
649509e
3fe10eb
649509e
fd82b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
 
 
 
8cd422c
 
 
 
 
 
 
 
 
 
5e9d470
8cd422c
 
649509e
 
 
15059e3
 
85b4489
15059e3
5730add
649509e
 
15059e3
725074b
15059e3
 
85b4489
725074b
85b4489
5e9d470
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import sys
import uuid
import re
import numpy as np
import json
import time
import copy
from collections import Counter

# Install flash-attn and set environment variable to skip cuda build
print("Installing flash-attn...")
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True
)

# Download snapshot from huggingface_hub
from huggingface_hub import snapshot_download
folder_path = './xcodec_mini_infer'
if not os.path.exists(folder_path):
    os.mkdir(folder_path)
    print(f"Folder created at: {folder_path}")
else:
    print(f"Folder already exists at: {folder_path}")

snapshot_download(
    repo_id="m-a-p/xcodec_mini_infer",
    local_dir=folder_path
)

# Change working directory to current folder
inference_dir = "."
try:
    os.chdir(inference_dir)
    print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
    print(f"Directory not found: {inference_dir}")
    exit(1)

# Append necessary module paths
base_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(base_path, 'xcodec_mini_infer'))
sys.path.append(os.path.join(base_path, 'xcodec_mini_infer', 'descriptaudiocodec'))

# Other imports
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
from models.soundstream_hubert_new import SoundStream

# Device setup
device = "cuda:0"

# Load and (optionally) compile the LM model
model = AutoModelForCausalLM.from_pretrained(
    "m-a-p/YuE-s1-7B-anneal-en-cot",
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
).to(device)
model.eval()
try:
    # torch.compile is available in PyTorch 2.0+
    model = torch.compile(model)
except Exception as e:
    print("torch.compile not used for model:", e)

# File paths for codec model checkpoint
basic_model_config = os.path.join(folder_path, 'final_ckpt/config.yaml')
resume_path = os.path.join(folder_path, 'final_ckpt/ckpt_00360000.pth')

# Initialize tokenizer and codec manipulator
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)

# Load codec model config and initialize codec model
model_config = OmegaConf.load(basic_model_config)
# Dynamically create the model from its name in the config.
codec_class = eval(model_config.generator.name)
codec_model = codec_class(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
try:
    codec_model = torch.compile(codec_model)
except Exception as e:
    print("torch.compile not used for codec_model:", e)

# Pre-compile the regex pattern for splitting lyrics
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL)

# ------------------ GPU decorated generation function ------------------ #
@spaces.GPU(duration=120)
def generate_music(
    max_new_tokens=5,
    run_n_segments=2,
    genre_txt=None,
    lyrics_txt=None,
    use_audio_prompt=False,
    audio_prompt_path="",
    prompt_start_time=0.0,
    prompt_end_time=30.0,
    cuda_idx=0,
    rescale=False,
):
    if use_audio_prompt and not audio_prompt_path:
        raise FileNotFoundError("Please provide an audio prompt filepath when 'use_audio_prompt' is enabled!")
    max_new_tokens = max_new_tokens * 100  # scaling factor

    with tempfile.TemporaryDirectory() as output_dir:
        stage1_output_dir = os.path.join(output_dir, "stage1")
        os.makedirs(stage1_output_dir, exist_ok=True)

        # -- In-place logits processor that blocks token ranges --
        class BlockTokenRangeProcessor(LogitsProcessor):
            def __init__(self, start_id, end_id):
                # Pre-create a tensor for indices if possible
                self.blocked_token_ids = list(range(start_id, end_id))
            def __call__(self, input_ids, scores):
                scores[:, self.blocked_token_ids] = -float("inf")
                return scores

        # -- Audio processing utility --
        def load_audio_mono(filepath, sampling_rate=16000):
            audio, sr = torchaudio.load(filepath)
            audio = audio.mean(dim=0, keepdim=True)  # convert to mono
            if sr != sampling_rate:
                resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
                audio = resampler(audio)
            return audio

        # -- Lyrics splitting using precompiled regex --
        def split_lyrics(lyrics: str):
            segments = LYRICS_PATTERN.findall(lyrics)
            # Return segments with formatting (strip extra whitespace)
            return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments]

        # Prepare prompt texts
        genres = genre_txt.strip() if genre_txt else ""
        lyrics_segments = split_lyrics(lyrics_txt + "\n")
        full_lyrics = "\n".join(lyrics_segments)
        # The first prompt is a global instruction; the rest are segments.
        prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
        prompt_texts += lyrics_segments

        random_id = uuid.uuid4()
        raw_output = None

        # Decoding config parameters
        top_p = 0.93
        temperature = 1.0
        repetition_penalty = 1.2

        # Pre-tokenize static tokens
        start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
        end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
        soa_token = mmtokenizer.soa  # start-of-audio token id
        eoa_token = mmtokenizer.eoa  # end-of-audio token id

        # Pre-tokenize the global prompt (first element)
        global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
        run_n_segments = min(run_n_segments + 1, len(prompt_texts))
        
        # Loop over segments. (Note: Each segment is processed sequentially.)
        for i, p in enumerate(tqdm(prompt_texts[:run_n_segments], desc="Generating segments")):
            # Remove any spurious tokens in the text
            section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
            guidance_scale = 1.5 if i <= 1 else 1.2
            if i == 0:
                # Skip generation on the instruction segment.
                continue

            # Build prompt IDs differently depending on whether audio prompt is enabled.
            if i == 1:
                if use_audio_prompt:
                    audio_prompt = load_audio_mono(audio_prompt_path)
                    audio_prompt = audio_prompt.unsqueeze(0)
                    with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
                        raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
                    # Process raw codes (transpose and convert to numpy)
                    raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
                    code_ids = codectool.npy2ids(raw_codes[0])
                    # Slice using prompt start/end time (assuming 50 tokens per second)
                    audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
                    audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token]
                    sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
                    head_id = global_prompt_ids + sentence_ids
                else:
                    head_id = global_prompt_ids
                prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids
            else:
                prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids

            prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0)
            if raw_output is not None:
                # Concatenate previous outputs with the new prompt
                input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1)
            else:
                input_ids = prompt_ids_tensor

            # Enforce maximum context window by slicing if needed
            max_context = 16384 - max_new_tokens - 1
            if input_ids.shape[-1] > max_context:
                input_ids = input_ids[:, -max_context:]

            with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
                output_seq = model.generate(
                    input_ids=input_ids,
                    max_new_tokens=max_new_tokens,
                    min_new_tokens=100,
                    do_sample=True,
                    top_p=top_p,
                    temperature=temperature,
                    repetition_penalty=repetition_penalty,
                    eos_token_id=eoa_token,
                    pad_token_id=eoa_token,
                    logits_processor=LogitsProcessorList([
                        BlockTokenRangeProcessor(0, 32002),
                        BlockTokenRangeProcessor(32016, 32016)
                    ]),
                    guidance_scale=guidance_scale,
                    use_cache=True
                )
                # Ensure the output ends with an end-of-audio token
                if output_seq[0, -1].item() != eoa_token:
                    tensor_eoa = torch.as_tensor([[eoa_token]], device=device)
                    output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
            # For subsequent segments, append only the newly generated tokens.
            if raw_output is not None:
                new_tokens = output_seq[:, input_ids.shape[-1]:]
                raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1)
            else:
                raw_output = output_seq

        # Save raw output codec tokens to temporary files and check token pairs.
        ids = raw_output[0].cpu().numpy()
        soa_idx = np.where(ids == soa_token)[0]
        eoa_idx = np.where(ids == eoa_token)[0]
        if len(soa_idx) != len(eoa_idx):
            raise ValueError(f'Invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')

        vocals_list = []
        instrumentals_list = []
        # If using an audio prompt, skip the first pair (it may be reference)
        start_idx = 1 if use_audio_prompt else 0
        for i in range(start_idx, len(soa_idx)):
            codec_ids = ids[soa_idx[i] + 1: eoa_idx[i]]
            if codec_ids[0] == 32016:
                codec_ids = codec_ids[1:]
            # Force even length and reshape into 2 channels.
            codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
            codec_ids = np.array(codec_ids)
            reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
            vocals_list.append(codectool.ids2npy(reshaped[0]))
            instrumentals_list.append(codectool.ids2npy(reshaped[1]))
        vocals = np.concatenate(vocals_list, axis=1)
        instrumentals = np.concatenate(instrumentals_list, axis=1)

        # Save the numpy arrays to temporary files
        vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy")
        inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy")
        np.save(vocal_save_path, vocals)
        np.save(inst_save_path, instrumentals)
        stage1_output_set = [vocal_save_path, inst_save_path]

        print("Converting to Audio...")

        # Utility function for saving audio with in-place clipping
        def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            limit = 0.99
            max_val = wav.abs().max().item()
            if rescale and max_val > 0:
                wav = wav * (limit / max_val)
            else:
                wav = wav.clamp(-limit, limit)
            torchaudio.save(path, wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)

        # Reconstruct tracks by decoding codec tokens
        recons_output_dir = os.path.join(output_dir, "recons")
        recons_mix_dir = os.path.join(recons_output_dir, "mix")
        os.makedirs(recons_mix_dir, exist_ok=True)
        tracks = []
        for npy_path in stage1_output_set:
            codec_result = np.load(npy_path)
            with torch.inference_mode():
                # Adjust shape: (1, T, C) expected by the decoder
                input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)
                decoded_waveform = codec_model.decode(input_tensor)
            decoded_waveform = decoded_waveform.cpu().squeeze(0)
            save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy_path))[0] + ".mp3")
            tracks.append(save_path)
            save_audio(decoded_waveform, save_path, sample_rate=16000)

        # Mix vocal and instrumental tracks (using torch to avoid extra I/O if possible)
        for inst_path in tracks:
            try:
                if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path:
                    vocal_path = inst_path.replace('instrumental', 'vocal')
                    if not os.path.exists(vocal_path):
                        continue
                    # Read using soundfile
                    vocal_stem, sr = sf.read(vocal_path)
                    instrumental_stem, _ = sf.read(inst_path)
                    mix_stem = (vocal_stem + instrumental_stem) / 1.0
                    mix_path = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
                    # Write the mix to disk (if needed) or return in memory
                    # Here we return three tuples: (sr, mix), (sr, vocal), (sr, instrumental)
                    return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16))
            except Exception as e:
                print("Mixing error:", e)
                return None, None, None

# ------------------ Inference function and Gradio UI ------------------ #
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
    try:
        mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(
            genre_txt=genre_txt_content,
            lyrics_txt=lyrics_txt_content,
            run_n_segments=num_segments,
            cuda_idx=0,
            max_new_tokens=max_new_tokens
        )
        return mixed_audio_data, vocal_audio_data, instrumental_audio_data
    except Exception as e:
        gr.Warning("An Error Occurred: " + str(e))
        return None, None, None
    finally:
        print("Temporary files deleted.")

# Build Gradio UI
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
        gr.HTML(
            """
            <div style="display:flex;column-gap:4px;">
                <a href="https://github.com/multimodal-art-projection/YuE">
                    <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
                </a>
                <a href="https://map-yue.github.io">
                    <img src='https://img.shields.io/badge/Project-Page-green'>
                </a>
                <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
                </a>
            </div>
            """
        )
        with gr.Row():
            with gr.Column():
                genre_txt = gr.Textbox(label="Genre")
                lyrics_txt = gr.Textbox(label="Lyrics")
            with gr.Column():
                num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
                max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
                submit_btn = gr.Button("Submit")
                music_out = gr.Audio(label="Mixed Audio Result")
                with gr.Accordion(label="Vocal and Instrumental Result", open=False):
                    vocal_out = gr.Audio(label="Vocal Audio")
                    instrumental_out = gr.Audio(label="Instrumental Audio")

        gr.Examples(
            examples=[
                [
                    "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
                    """[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.

[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
                    """
                ],
                [
                    "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
                    """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands

[chorus]
This is my life, and I'mma keep it real
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
                    """
                ]
            ],
            inputs=[genre_txt, lyrics_txt],
            outputs=[music_out, vocal_out, instrumental_out],
            cache_examples=True,
            cache_mode="eager",
            fn=infer
        )

    submit_btn.click(
        fn=infer,
        inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
        outputs=[music_out, vocal_out, instrumental_out]
    )
    gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
    
demo.queue().launch(show_error=True)