Spaces:
Runtime error
Runtime error
File size: 9,654 Bytes
11e16fe 859cec7 f037e1e 88ae781 caf2618 11e16fe 2ab7633 2128c11 2e27102 c0303cf ab7a94a 11e16fe d325594 71c6d95 bf0f0e7 d325594 0b7634e 11e16fe bd57c84 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe c78126c 11e16fe 1d6cb38 11e16fe d325594 11e16fe bd57c84 11e16fe c78126c 11e16fe d325594 11e16fe bd57c84 11e16fe 5fefb86 11e16fe 5fefb86 6ee70c5 5fefb86 11e16fe bd57c84 11e16fe d325594 11e16fe bc003ad 11e16fe abc304c e0def5d eeed558 6bd6cac 6c4ec2c ac5de2e eeed558 6c4ec2c ac5de2e eeed558 6c4ec2c ac5de2e eeed558 6c4ec2c eeed558 6c4ec2c c0303cf bf0f0e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
from moviepy.video.fx.all import resize
from moviepy.video.io.bindings import mplfig_to_npimage
from PIL import Image, ImageDraw, ImageFont
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
from scipy import interpolate
import librosa
import librosa.display
import gradio as gr
import os
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length].copy()
mse_values = mse_values[:min_length]
# Remove NaN values and create a mask for valid data
valid_mask = ~np.isnan(mse_values)
df = df[valid_mask]
mse_values = mse_values[valid_mask]
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Get continuous segments
segments = get_continuous_segments(df['Seconds'], mse_values)
# Plot each segment separately
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
# Calculate and plot rolling mean and std for this segment
if len(segment) > 1: # Only if there's more than one point in the segment
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
median = np.median(mse_values)
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold')
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=300)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Frames')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=300)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = min(60, len(mse_values))
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
# Ensure tick_locations are within bounds
tick_locations = tick_locations[tick_locations < len(df)]
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig
def plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df, title="Combined MSE Heatmaps"):
plt.figure(figsize=(20, 6), dpi=300)
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(20, 8), sharex=True, gridspec_kw={'height_ratios': [1, 1, 1.2], 'hspace': 0})
# Face heatmap
sns.heatmap(mse_face.reshape(1, -1), cmap='Reds', cbar=False, ax=ax1, xticklabels=False, yticklabels=False)
ax1.set_ylabel('Face', rotation=0, ha='right', va='center')
ax1.yaxis.set_label_coords(-0.01, 0.5)
# Posture heatmap
sns.heatmap(mse_posture.reshape(1, -1), cmap='Reds', cbar=False, ax=ax2, xticklabels=False, yticklabels=False)
ax2.set_ylabel('Posture', rotation=0, ha='right', va='center')
ax2.yaxis.set_label_coords(-0.01, 0.5)
# Voice heatmap
sns.heatmap(mse_voice.reshape(1, -1), cmap='Reds', cbar=False, ax=ax3, yticklabels=False)
ax3.set_ylabel('Voice', rotation=0, ha='right', va='center')
ax3.yaxis.set_label_coords(-0.01, 0.5)
# Set x-axis ticks to timecodes for the bottom subplot
num_ticks = min(60, len(mse_voice))
tick_locations = np.linspace(0, len(mse_voice) - 1, num_ticks).astype(int)
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
ax3.set_xticks(tick_locations)
ax3.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
# Remove spines
for ax in [ax1, ax2, ax3]:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.suptitle(title)
plt.tight_layout()
plt.close()
return fig
def plot_audio_waveform(audio_path, title="Audio Waveform"):
# Load the audio file
y, sr = librosa.load(audio_path)
# Create the plot
plt.figure(figsize=(20, 4))
librosa.display.waveshow(y, sr=sr)
# Set the x-axis to display timecodes
max_time = librosa.get_duration(y=y, sr=sr)
x_ticks = np.arange(0, max_time, max_time/10) # 10 ticks
x_labels = [f"{int(t//3600):02d}:{int((t%3600)//60):02d}:{int(t%60):02d}" for t in x_ticks]
plt.xticks(x_ticks, x_labels, rotation=45)
plt.title(title)
plt.xlabel("Time")
plt.ylabel("Amplitude")
plt.tight_layout()
return plt.gcf()
|