File size: 9,654 Bytes
11e16fe
859cec7
f037e1e
88ae781
caf2618
11e16fe
 
 
2ab7633
2128c11
2e27102
c0303cf
ab7a94a
11e16fe
d325594
 
71c6d95
bf0f0e7
 
d325594
0b7634e
11e16fe
 
bd57c84
11e16fe
 
 
 
 
 
 
 
79bd6b6
11e16fe
 
79bd6b6
 
 
 
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
 
11e16fe
79bd6b6
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
11e16fe
 
 
 
 
c78126c
 
11e16fe
 
 
 
 
 
 
 
 
 
 
 
1d6cb38
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d325594
11e16fe
bd57c84
11e16fe
 
 
 
c78126c
11e16fe
 
 
 
 
 
 
 
 
 
 
 
d325594
11e16fe
bd57c84
11e16fe
 
 
 
 
 
 
 
 
5fefb86
11e16fe
5fefb86
 
6ee70c5
5fefb86
 
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
d325594
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
bc003ad
 
11e16fe
 
 
 
 
 
abc304c
e0def5d
 
eeed558
 
6bd6cac
6c4ec2c
 
ac5de2e
eeed558
 
6c4ec2c
 
ac5de2e
eeed558
 
6c4ec2c
 
ac5de2e
eeed558
 
6c4ec2c
 
 
 
 
 
 
 
eeed558
 
 
 
 
 
 
6c4ec2c
 
 
c0303cf
bf0f0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
from moviepy.video.fx.all import resize
from moviepy.video.io.bindings import mplfig_to_npimage
from PIL import Image, ImageDraw, ImageFont
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
from scipy import interpolate
import librosa
import librosa.display
import gradio as gr
import os

def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    if 'Seconds' not in df.columns:
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Ensure df and mse_values have the same length and remove NaN values
    min_length = min(len(df), len(mse_values))
    df = df.iloc[:min_length].copy()
    mse_values = mse_values[:min_length]

    # Remove NaN values and create a mask for valid data
    valid_mask = ~np.isnan(mse_values)
    df = df[valid_mask]
    mse_values = mse_values[valid_mask]

    # Function to identify continuous segments
    def get_continuous_segments(seconds, values, max_gap=1):
        segments = []
        current_segment = []
        for i, (sec, val) in enumerate(zip(seconds, values)):
            if not current_segment or (sec - current_segment[-1][0] <= max_gap):
                current_segment.append((sec, val))
            else:
                segments.append(current_segment)
                current_segment = [(sec, val)]
        if current_segment:
            segments.append(current_segment)
        return segments

    # Get continuous segments
    segments = get_continuous_segments(df['Seconds'], mse_values)

    # Plot each segment separately
    for segment in segments:
        segment_seconds, segment_mse = zip(*segment)
        ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
        
        # Calculate and plot rolling mean and std for this segment
        if len(segment) > 1:  # Only if there's more than one point in the segment
            segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
            segment_df = segment_df.sort_values('Seconds')
            mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
            std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
            
            ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
            ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)

    median = np.median(mse_values)
    ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')

    threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
    ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold')
    ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red')

    anomalies = determine_anomalies(mse_values, anomaly_threshold)
    anomaly_frames = df['Frame'].iloc[anomalies].tolist()

    ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)

    anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
                            df['Seconds'].iloc[anomalies],
                            mse_values[anomalies]))
    anomaly_data.sort(key=lambda x: x[1])

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    ax.legend()
    plt.tight_layout()
    plt.close()
    return fig, anomaly_frames


def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
    plt.figure(figsize=(16, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 3))

    ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
    ax.set_xlabel('Mean Squared Error')
    ax.set_ylabel('Number of Frames')
    ax.set_title(title)

    mean = np.mean(mse_values)
    std = np.std(mse_values)
    threshold = mean + anomaly_threshold * std

    ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)

    plt.tight_layout()
    plt.close()
    return fig


def plot_mse_heatmap(mse_values, title, df):
    plt.figure(figsize=(20, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(20, 3))

    # Reshape MSE values to 2D array for heatmap
    mse_2d = mse_values.reshape(1, -1)

    # Create heatmap
    sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)

    # Set x-axis ticks to timecodes
    num_ticks = min(60, len(mse_values))
    tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
    
    # Ensure tick_locations are within bounds
    tick_locations = tick_locations[tick_locations < len(df)]
    
    tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')

    ax.set_title(title)

    # Remove y-axis labels
    ax.set_yticks([])

    plt.tight_layout()
    plt.close()
    return fig

def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
    posture_frames, posture_scores = zip(*posture_data)

    # Create a new dataframe for posture data
    posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})


    posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')

    ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
    mean = posture_df['Score'].rolling(window=10).mean()
    ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Posture Score')
    ax.set_title("Body Posture Over Time")

    ax.grid(True, linestyle='--', alpha=0.7)

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    plt.tight_layout()
    plt.close()
    return fig


def plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df, title="Combined MSE Heatmaps"):
    plt.figure(figsize=(20, 6), dpi=300)
    fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(20, 8), sharex=True, gridspec_kw={'height_ratios': [1, 1, 1.2], 'hspace': 0})

    # Face heatmap
    sns.heatmap(mse_face.reshape(1, -1), cmap='Reds', cbar=False, ax=ax1, xticklabels=False, yticklabels=False)
    ax1.set_ylabel('Face', rotation=0, ha='right', va='center')
    ax1.yaxis.set_label_coords(-0.01, 0.5)

    # Posture heatmap
    sns.heatmap(mse_posture.reshape(1, -1), cmap='Reds', cbar=False, ax=ax2, xticklabels=False, yticklabels=False)
    ax2.set_ylabel('Posture', rotation=0, ha='right', va='center')
    ax2.yaxis.set_label_coords(-0.01, 0.5)

    # Voice heatmap
    sns.heatmap(mse_voice.reshape(1, -1), cmap='Reds', cbar=False, ax=ax3, yticklabels=False)
    ax3.set_ylabel('Voice', rotation=0, ha='right', va='center')
    ax3.yaxis.set_label_coords(-0.01, 0.5)

    # Set x-axis ticks to timecodes for the bottom subplot
    num_ticks = min(60, len(mse_voice))
    tick_locations = np.linspace(0, len(mse_voice) - 1, num_ticks).astype(int)
    tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
    ax3.set_xticks(tick_locations)
    ax3.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')

    # Remove spines
    for ax in [ax1, ax2, ax3]:
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        ax.spines['bottom'].set_visible(False)
        ax.spines['left'].set_visible(False)

    plt.suptitle(title)
    plt.tight_layout()
    plt.close()
    return fig

def plot_audio_waveform(audio_path, title="Audio Waveform"):
    # Load the audio file
    y, sr = librosa.load(audio_path)
    
    # Create the plot
    plt.figure(figsize=(20, 4))
    librosa.display.waveshow(y, sr=sr)
    
    # Set the x-axis to display timecodes
    max_time = librosa.get_duration(y=y, sr=sr)
    x_ticks = np.arange(0, max_time, max_time/10)  # 10 ticks
    x_labels = [f"{int(t//3600):02d}:{int((t%3600)//60):02d}:{int(t%60):02d}" for t in x_ticks]
    plt.xticks(x_ticks, x_labels, rotation=45)
    
    plt.title(title)
    plt.xlabel("Time")
    plt.ylabel("Amplitude")
    plt.tight_layout()
    
    return plt.gcf()