Update visualization.py
Browse files- visualization.py +33 -98
visualization.py
CHANGED
@@ -218,104 +218,6 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
218 |
return fig
|
219 |
|
220 |
|
221 |
-
|
222 |
-
def fill_with_zeros(mse_array, total_frames):
|
223 |
-
result = np.zeros(total_frames)
|
224 |
-
indices = np.linspace(0, total_frames - 1, len(mse_array)).astype(int)
|
225 |
-
result[indices] = mse_array
|
226 |
-
return result
|
227 |
-
|
228 |
-
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, desired_fps, total_frames, video_width):
|
229 |
-
fig, ax = plt.subplots(figsize=(video_width / 250, 0.4))
|
230 |
-
|
231 |
-
# Create the full heatmap for the entire video duration
|
232 |
-
combined_mse = np.array([mse_embeddings, mse_posture, mse_voice])
|
233 |
-
|
234 |
-
# Use pcolormesh for better performance with large datasets
|
235 |
-
im = ax.pcolormesh(np.arange(total_frames) / desired_fps, [0, 1, 2], combined_mse,
|
236 |
-
cmap='Reds', vmin=0, vmax=np.max(combined_mse))
|
237 |
-
|
238 |
-
ax.set_ylim(0, 3)
|
239 |
-
ax.set_yticks([0.5, 1.5, 2.5])
|
240 |
-
ax.set_yticklabels(['Face', 'Posture', 'Voice'], fontsize=7)
|
241 |
-
|
242 |
-
# Set x-axis to show full video duration
|
243 |
-
ax.set_xlim(0, total_frames / desired_fps)
|
244 |
-
|
245 |
-
# Add vertical line for current time
|
246 |
-
current_time = t
|
247 |
-
ax.axvline(x=current_time, color='black', linewidth=2)
|
248 |
-
|
249 |
-
# Set x-axis ticks and labels
|
250 |
-
ax.set_xticks([0, current_time, total_frames / desired_fps])
|
251 |
-
ax.set_xticklabels(['0:00', f'{current_time:.2f}', f'{total_frames / desired_fps:.2f}'], fontsize=6)
|
252 |
-
|
253 |
-
plt.tight_layout(pad=0.5)
|
254 |
-
|
255 |
-
canvas = FigureCanvas(fig)
|
256 |
-
canvas.draw()
|
257 |
-
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
|
258 |
-
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
259 |
-
plt.close(fig)
|
260 |
-
return heatmap_img
|
261 |
-
|
262 |
-
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
263 |
-
print(f"Creating heatmap video. Output folder: {output_folder}")
|
264 |
-
os.makedirs(output_folder, exist_ok=True)
|
265 |
-
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
266 |
-
heatmap_video_path = os.path.join(output_folder, output_filename)
|
267 |
-
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
268 |
-
|
269 |
-
# Load the original video
|
270 |
-
video = VideoFileClip(video_path)
|
271 |
-
|
272 |
-
# Get video properties
|
273 |
-
width, height = video.w, video.h
|
274 |
-
total_frames = int(video.duration * video.fps)
|
275 |
-
|
276 |
-
# Ensure MSE arrays align with original video frames
|
277 |
-
def align_mse_array(mse_array, original_fps, desired_fps, total_frames):
|
278 |
-
original_times = np.arange(len(mse_array)) / original_fps
|
279 |
-
desired_times = np.arange(total_frames) / desired_fps
|
280 |
-
interpolated_mse = np.interp(desired_times, original_times, mse_array)
|
281 |
-
return interpolated_mse
|
282 |
-
|
283 |
-
original_fps = len(mse_embeddings) / video.duration
|
284 |
-
mse_embeddings = align_mse_array(mse_embeddings, original_fps, desired_fps, total_frames)
|
285 |
-
mse_posture = align_mse_array(mse_posture, original_fps, desired_fps, total_frames)
|
286 |
-
mse_voice = align_mse_array(mse_voice, original_fps, desired_fps, total_frames)
|
287 |
-
|
288 |
-
def combine_video_and_heatmap(t):
|
289 |
-
frame_index = int(t * desired_fps)
|
290 |
-
video_frame = video.get_frame(t)
|
291 |
-
|
292 |
-
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, desired_fps, total_frames, width)
|
293 |
-
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, int(height * 0.2)))
|
294 |
-
|
295 |
-
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
296 |
-
return combined_frame
|
297 |
-
|
298 |
-
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
299 |
-
final_clip = final_clip.set_fps(desired_fps)
|
300 |
-
|
301 |
-
if video.audio is not None:
|
302 |
-
final_clip = final_clip.set_audio(video.audio.set_fps(desired_fps))
|
303 |
-
|
304 |
-
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=desired_fps)
|
305 |
-
|
306 |
-
# Close the video clips
|
307 |
-
video.close()
|
308 |
-
final_clip.close()
|
309 |
-
|
310 |
-
if os.path.exists(heatmap_video_path):
|
311 |
-
print(f"Heatmap video created at: {heatmap_video_path}")
|
312 |
-
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
313 |
-
return heatmap_video_path
|
314 |
-
else:
|
315 |
-
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
316 |
-
return None
|
317 |
-
|
318 |
-
|
319 |
# Function to create the correlation heatmap
|
320 |
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
321 |
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
@@ -328,3 +230,36 @@ def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
|
328 |
plt.title('Correlation Heatmap of MSEs')
|
329 |
plt.tight_layout()
|
330 |
return plt.gcf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
return fig
|
219 |
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
# Function to create the correlation heatmap
|
222 |
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
223 |
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
|
|
230 |
plt.title('Correlation Heatmap of MSEs')
|
231 |
plt.tight_layout()
|
232 |
return plt.gcf()
|
233 |
+
|
234 |
+
def plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df, title="Stacked MSE Heatmaps"):
|
235 |
+
plt.figure(figsize=(20, 9), dpi=300)
|
236 |
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(20, 9), sharex=True)
|
237 |
+
|
238 |
+
# Face heatmap
|
239 |
+
sns.heatmap(mse_face.reshape(1, -1), cmap='YlOrRd', cbar=False, ax=ax1)
|
240 |
+
ax1.set_yticks([0.5])
|
241 |
+
ax1.set_yticklabels(['Face'], rotation=0, va='center')
|
242 |
+
ax1.set_xticks([])
|
243 |
+
|
244 |
+
# Posture heatmap
|
245 |
+
sns.heatmap(mse_posture.reshape(1, -1), cmap='YlOrRd', cbar=False, ax=ax2)
|
246 |
+
ax2.set_yticks([0.5])
|
247 |
+
ax2.set_yticklabels(['Posture'], rotation=0, va='center')
|
248 |
+
ax2.set_xticks([])
|
249 |
+
|
250 |
+
# Voice heatmap
|
251 |
+
sns.heatmap(mse_voice.reshape(1, -1), cmap='YlOrRd', cbar=False, ax=ax3)
|
252 |
+
ax3.set_yticks([0.5])
|
253 |
+
ax3.set_yticklabels(['Voice'], rotation=0, va='center')
|
254 |
+
|
255 |
+
# Set x-axis ticks to timecodes for the bottom subplot
|
256 |
+
num_ticks = min(60, len(mse_voice))
|
257 |
+
tick_locations = np.linspace(0, len(mse_voice) - 1, num_ticks).astype(int)
|
258 |
+
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
|
259 |
+
ax3.set_xticks(tick_locations)
|
260 |
+
ax3.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
|
261 |
+
|
262 |
+
plt.suptitle(title)
|
263 |
+
plt.tight_layout()
|
264 |
+
plt.close()
|
265 |
+
return fig
|