reab5555 commited on
Commit
f037e1e
·
verified ·
1 Parent(s): 179e3d4

Update visualization.py

Browse files
Files changed (1) hide show
  1. visualization.py +82 -33
visualization.py CHANGED
@@ -1,6 +1,6 @@
1
  import matplotlib.pyplot as plt
2
  from mpl_toolkits.mplot3d import Axes3D
3
- from matplotlib.backends.backend_agg import FigureCanvasAgg
4
  import matplotlib.colors as mcolors
5
  from matplotlib.colors import LinearSegmentedColormap
6
  import seaborn as sns
@@ -217,43 +217,92 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
217
  return fig
218
 
219
 
220
- def create_heatmap(frame_time, mse_embeddings, mse_posture, mse_voice):
221
- fig, ax = plt.subplots(figsize=(10, 1))
222
- time_index = int(frame_time)
223
 
224
- if time_index < len(mse_embeddings) and time_index < len(mse_posture) and time_index < len(mse_voice):
225
- mse_values = [mse_embeddings[time_index], mse_posture[time_index], mse_voice[time_index]]
226
- else:
227
- mse_values = [0, 0, 0] # Default values if the index is out of bounds
 
 
 
 
 
228
 
229
- ax.barh(['Face', 'Posture', 'Voice'], mse_values, color=['navy', 'purple', 'green'])
230
- ax.set_xlim(0, 1) # Normalize the MSE values
 
 
 
231
 
232
- canvas = FigureCanvasAgg(fig)
 
 
233
  canvas.draw()
234
- img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
235
- img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
236
  plt.close(fig)
237
- return img
238
-
239
- def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, fps, largest_cluster):
240
- original_clip = VideoFileClip(video_path)
241
- duration = original_clip.duration
242
- heatmap_clips = []
243
-
244
- for t in np.arange(0, duration, 1.0 / fps):
245
- heatmap_img = create_heatmap(t, mse_embeddings, mse_posture, mse_voice)
246
- heatmap_img_bgr = cv2.cvtColor(heatmap_img, cv2.COLOR_RGB2BGR)
247
- heatmap_filename = os.path.join(output_folder, f"heatmap_{int(t * fps)}.png")
248
- cv2.imwrite(heatmap_filename, heatmap_img_bgr)
249
- heatmap_clips.append(ImageClip(heatmap_filename).set_duration(1.0 / fps).set_start(t).resize(height=100))
250
-
251
- heatmap_clip = concatenate_videoclips(heatmap_clips, method="compose")
252
- final_clip = CompositeVideoClip([original_clip, heatmap_clip.set_position(('center', 'bottom'))])
253
- heatmap_video_path = os.path.join(output_folder, "heatmap_video.mp4")
254
- final_clip.write_videofile(heatmap_video_path, codec='libx264', fps=fps, audio_codec='aac')
255
-
256
- return heatmap_video_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
 
258
 
259
  # Function to create the correlation heatmap
 
1
  import matplotlib.pyplot as plt
2
  from mpl_toolkits.mplot3d import Axes3D
3
+ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
4
  import matplotlib.colors as mcolors
5
  from matplotlib.colors import LinearSegmentedColormap
6
  import seaborn as sns
 
217
  return fig
218
 
219
 
220
+ def create_heatmap(t, mse_embeddings, mse_posture, mse_voice):
221
+ frame_count = int(t * video.fps)
 
222
 
223
+ # Normalize MSE values
224
+ mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
225
+ mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
226
+ mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
227
+
228
+ combined_mse = np.zeros((3, total_frames))
229
+ combined_mse[0] = mse_embeddings_norm
230
+ combined_mse[1] = mse_posture_norm
231
+ combined_mse[2] = mse_voice_norm
232
 
233
+ fig, ax = plt.subplots(figsize=(10, 2))
234
+ ax.imshow(combined_mse, aspect='auto', cmap='coolwarm', vmin=0, vmax=1, extent=[0, total_frames, 0, 3])
235
+ ax.set_yticks([0.5, 1.5, 2.5])
236
+ ax.set_yticklabels(['Face', 'Posture', 'Voice'])
237
+ ax.set_xticks([])
238
 
239
+ ax.axvline(x=frame_count, color='blue', linewidth=2)
240
+
241
+ canvas = FigureCanvas(fig)
242
  canvas.draw()
243
+ heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
244
+ heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
245
  plt.close(fig)
246
+ return heatmap_img
247
+
248
+ # Function to create video with heatmap
249
+ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
250
+ print(f"Creating heatmap video. Output folder: {output_folder}")
251
+
252
+ os.makedirs(output_folder, exist_ok=True)
253
+
254
+ output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
255
+ heatmap_video_path = os.path.join(output_folder, output_filename)
256
+
257
+ print(f"Heatmap video will be saved at: {heatmap_video_path}")
258
+
259
+ # Load the original video
260
+ video = VideoFileClip(video_path)
261
+
262
+ # Get video properties
263
+ width, height = video.w, video.h
264
+ total_frames = int(video.duration * video.fps)
265
+
266
+ # Ensure all MSE arrays have the same length as total_frames
267
+ mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
268
+ np.arange(len(mse_embeddings)), mse_embeddings)
269
+ mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
270
+ np.arange(len(mse_posture)), mse_posture)
271
+ mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
272
+ np.arange(len(mse_voice)), mse_voice)
273
+
274
+ mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
275
+ mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
276
+ mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
277
+
278
+ combined_mse = np.zeros((3, total_frames))
279
+ combined_mse[0] = mse_embeddings_norm
280
+ combined_mse[1] = mse_posture_norm
281
+ combined_mse[2] = mse_voice_norm
282
+
283
+ def combine_video_and_heatmap(t):
284
+ video_frame = video.get_frame(t)
285
+ heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice)
286
+ combined_frame = np.vstack((video_frame, heatmap_frame))
287
+ return add_timecode(combined_frame, t)
288
+
289
+ final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
290
+ final_clip = final_clip.set_audio(video.audio)
291
+
292
+ # Write the final video
293
+ final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
294
+
295
+ # Close the video clips
296
+ video.close()
297
+ final_clip.close()
298
+
299
+ if os.path.exists(heatmap_video_path):
300
+ print(f"Heatmap video created at: {heatmap_video_path}")
301
+ print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
302
+ return heatmap_video_path
303
+ else:
304
+ print(f"Failed to create heatmap video at: {heatmap_video_path}")
305
+ return None
306
 
307
 
308
  # Function to create the correlation heatmap