Update visualization.py
Browse files- visualization.py +3 -3
visualization.py
CHANGED
@@ -72,8 +72,8 @@ def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_thre
|
|
72 |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
73 |
|
74 |
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
|
75 |
-
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold
|
76 |
-
ax.text(ax.get_xlim()[1], threshold, f'Threshold
|
77 |
|
78 |
anomalies = determine_anomalies(mse_values, anomaly_threshold)
|
79 |
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
|
@@ -214,7 +214,7 @@ def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
|
214 |
|
215 |
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
|
216 |
ax.set_xlabel('Mean Squared Error')
|
217 |
-
ax.set_ylabel('
|
218 |
ax.set_title(title)
|
219 |
|
220 |
mean = np.mean(mse_values)
|
|
|
72 |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
73 |
|
74 |
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
|
75 |
+
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold')
|
76 |
+
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red')
|
77 |
|
78 |
anomalies = determine_anomalies(mse_values, anomaly_threshold)
|
79 |
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
|
|
|
214 |
|
215 |
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
|
216 |
ax.set_xlabel('Mean Squared Error')
|
217 |
+
ax.set_ylabel('Number of Frames')
|
218 |
ax.set_title(title)
|
219 |
|
220 |
mean = np.mean(mse_values)
|