Spaces:
Runtime error
Runtime error
Update visualization.py
Browse files- visualization.py +110 -0
visualization.py
CHANGED
|
@@ -216,3 +216,113 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
| 216 |
plt.tight_layout()
|
| 217 |
plt.close()
|
| 218 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
plt.tight_layout()
|
| 217 |
plt.close()
|
| 218 |
return fig
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
| 223 |
+
frame_count = int(t * video_fps)
|
| 224 |
+
|
| 225 |
+
# Normalize MSE values
|
| 226 |
+
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
|
| 227 |
+
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
|
| 228 |
+
mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
|
| 229 |
+
|
| 230 |
+
combined_mse = np.zeros((3, total_frames))
|
| 231 |
+
combined_mse[0] = mse_embeddings_norm
|
| 232 |
+
combined_mse[1] = mse_posture_norm
|
| 233 |
+
combined_mse[2] = mse_voice_norm
|
| 234 |
+
|
| 235 |
+
fig, ax = plt.subplots(figsize=(video_width / 300, 0.4))
|
| 236 |
+
ax.imshow(combined_mse, aspect='auto', cmap='Reds', vmin=0, vmax=1, extent=[0, total_frames, 0, 3])
|
| 237 |
+
ax.set_yticks([0.5, 1.5, 2.5])
|
| 238 |
+
ax.set_yticklabels(['Voice', 'Posture', 'Face'], fontsize=7)
|
| 239 |
+
ax.set_xticks([])
|
| 240 |
+
|
| 241 |
+
ax.axvline(x=frame_count, color='black', linewidth=2)
|
| 242 |
+
|
| 243 |
+
plt.tight_layout(pad=0.5)
|
| 244 |
+
|
| 245 |
+
canvas = FigureCanvas(fig)
|
| 246 |
+
canvas.draw()
|
| 247 |
+
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
|
| 248 |
+
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
| 249 |
+
plt.close(fig)
|
| 250 |
+
return heatmap_img
|
| 251 |
+
|
| 252 |
+
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
| 253 |
+
print(f"Creating heatmap video. Output folder: {output_folder}")
|
| 254 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 255 |
+
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
| 256 |
+
heatmap_video_path = os.path.join(output_folder, output_filename)
|
| 257 |
+
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
| 258 |
+
|
| 259 |
+
# Load the original video
|
| 260 |
+
video = VideoFileClip(video_path)
|
| 261 |
+
|
| 262 |
+
# Get video properties
|
| 263 |
+
width, height = video.w, video.h
|
| 264 |
+
total_frames = int(video.duration * video.fps)
|
| 265 |
+
|
| 266 |
+
def fill_with_previous_values(mse_array, total_frames):
|
| 267 |
+
result = np.zeros(total_frames)
|
| 268 |
+
indices = np.linspace(0, total_frames - 1, len(mse_array)).astype(int)
|
| 269 |
+
result[indices] = mse_array
|
| 270 |
+
for i in range(1, total_frames):
|
| 271 |
+
if result[i] == 0:
|
| 272 |
+
result[i] = result[i-1]
|
| 273 |
+
return result
|
| 274 |
+
|
| 275 |
+
# Fill gaps with previous values
|
| 276 |
+
mse_embeddings = fill_with_previous_values(mse_embeddings, total_frames)
|
| 277 |
+
mse_posture = fill_with_previous_values(mse_posture, total_frames)
|
| 278 |
+
mse_voice = fill_with_previous_values(mse_voice, total_frames)
|
| 279 |
+
|
| 280 |
+
def combine_video_and_heatmap(t):
|
| 281 |
+
video_frame = video.get_frame(t)
|
| 282 |
+
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width)
|
| 283 |
+
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
| 284 |
+
|
| 285 |
+
# Convert heatmap frame to RGB if it's RGBA
|
| 286 |
+
if heatmap_frame_resized.shape[2] == 4:
|
| 287 |
+
heatmap_frame_resized = cv2.cvtColor(heatmap_frame_resized, cv2.COLOR_RGBA2RGB)
|
| 288 |
+
|
| 289 |
+
# Ensure both frames have the same number of channels
|
| 290 |
+
if video_frame.shape[2] != heatmap_frame_resized.shape[2]:
|
| 291 |
+
if video_frame.shape[2] == 3:
|
| 292 |
+
heatmap_frame_resized = heatmap_frame_resized[:, :, :3] # Use only RGB channels
|
| 293 |
+
else:
|
| 294 |
+
video_frame = cv2.cvtColor(video_frame, cv2.COLOR_RGB2RGBA)
|
| 295 |
+
|
| 296 |
+
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
| 297 |
+
return combined_frame
|
| 298 |
+
|
| 299 |
+
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
| 300 |
+
final_clip = final_clip.set_audio(video.audio)
|
| 301 |
+
|
| 302 |
+
# Write the final video
|
| 303 |
+
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
| 304 |
+
|
| 305 |
+
# Close the video clips
|
| 306 |
+
video.close()
|
| 307 |
+
final_clip.close()
|
| 308 |
+
|
| 309 |
+
if os.path.exists(heatmap_video_path):
|
| 310 |
+
print(f"Heatmap video created at: {heatmap_video_path}")
|
| 311 |
+
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
| 312 |
+
return heatmap_video_path
|
| 313 |
+
else:
|
| 314 |
+
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
| 315 |
+
return None
|
| 316 |
+
|
| 317 |
+
# Function to create the correlation heatmap
|
| 318 |
+
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
| 319 |
+
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
| 320 |
+
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
|
| 321 |
+
corr = df.corr()
|
| 322 |
+
|
| 323 |
+
plt.figure(figsize=(10, 8), dpi=300)
|
| 324 |
+
|
| 325 |
+
heatmap = sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
|
| 326 |
+
plt.title('Correlation Heatmap of MSEs')
|
| 327 |
+
plt.tight_layout()
|
| 328 |
+
return plt.gcf()
|