Update visualization.py
Browse files- visualization.py +0 -131
visualization.py
CHANGED
@@ -216,134 +216,3 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
216 |
plt.tight_layout()
|
217 |
plt.close()
|
218 |
return fig
|
219 |
-
|
220 |
-
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
221 |
-
frame_count = int(t * video_fps)
|
222 |
-
|
223 |
-
# Normalize MSE values
|
224 |
-
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
|
225 |
-
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
|
226 |
-
mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
|
227 |
-
|
228 |
-
combined_mse = np.zeros((3, total_frames))
|
229 |
-
combined_mse[0] = mse_embeddings
|
230 |
-
combined_mse[1] = mse_posture
|
231 |
-
combined_mse[2] = mse_voice
|
232 |
-
|
233 |
-
fig, ax = plt.subplots(figsize=(video_width / 300, 0.4))
|
234 |
-
ax.imshow(combined_mse, aspect='auto', cmap='Reds', vmin=0, vmax=1, extent=[0, total_frames, 0, 3])
|
235 |
-
ax.set_yticks([0.5, 1.5, 2.5])
|
236 |
-
ax.set_yticklabels(['Voice', 'Posture', 'Face'], fontsize=7)
|
237 |
-
ax.set_xticks([])
|
238 |
-
|
239 |
-
ax.axvline(x=frame_count, color='black', linewidth=2)
|
240 |
-
|
241 |
-
plt.tight_layout(pad=0.5)
|
242 |
-
|
243 |
-
canvas = FigureCanvas(fig)
|
244 |
-
canvas.draw()
|
245 |
-
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
|
246 |
-
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
247 |
-
plt.close(fig)
|
248 |
-
return heatmap_img
|
249 |
-
|
250 |
-
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
251 |
-
print(f"Creating heatmap video. Output folder: {output_folder}")
|
252 |
-
os.makedirs(output_folder, exist_ok=True)
|
253 |
-
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
254 |
-
heatmap_video_path = os.path.join(output_folder, output_filename)
|
255 |
-
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
256 |
-
|
257 |
-
# Load the original video
|
258 |
-
video = VideoFileClip(video_path)
|
259 |
-
|
260 |
-
# Get video properties
|
261 |
-
width, height = video.w, video.h
|
262 |
-
total_frames = int(video.duration * video.fps)
|
263 |
-
|
264 |
-
def fill_with_previous_values(mse_array, total_frames):
|
265 |
-
result = np.zeros(total_frames)
|
266 |
-
indices = np.linspace(0, total_frames - 1, len(mse_array)).astype(int)
|
267 |
-
result[indices] = mse_array
|
268 |
-
for i in range(1, total_frames):
|
269 |
-
if result[i] == 0:
|
270 |
-
result[i] = result[i-1]
|
271 |
-
return result
|
272 |
-
|
273 |
-
# Fill gaps with previous values
|
274 |
-
mse_embeddings = fill_with_previous_values(mse_embeddings, total_frames)
|
275 |
-
mse_posture = fill_with_previous_values(mse_posture, total_frames)
|
276 |
-
mse_voice = fill_with_previous_values(mse_voice, total_frames)
|
277 |
-
|
278 |
-
# Find max values for each variable
|
279 |
-
max_embeddings = np.max(mse_embeddings)
|
280 |
-
max_posture = np.max(mse_posture)
|
281 |
-
max_voice = np.max(mse_voice)
|
282 |
-
|
283 |
-
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, fps, total_frames, width):
|
284 |
-
frame_index = int(t * fps)
|
285 |
-
|
286 |
-
# Create separate color maps for each variable
|
287 |
-
cmap_embeddings = plt.get_cmap('Reds')
|
288 |
-
cmap_posture = plt.get_cmap('Reds')
|
289 |
-
cmap_voice = plt.get_cmap('Reds')
|
290 |
-
|
291 |
-
# Normalize values within their own scales
|
292 |
-
norm_embeddings = mse_embeddings[frame_index] / max_embeddings
|
293 |
-
norm_posture = mse_posture[frame_index] / max_posture
|
294 |
-
norm_voice = mse_voice[frame_index] / max_voice
|
295 |
-
|
296 |
-
# Create color arrays for each variable
|
297 |
-
color_embeddings = cmap_embeddings(norm_embeddings)
|
298 |
-
color_posture = cmap_posture(norm_posture)
|
299 |
-
color_voice = cmap_voice(norm_voice)
|
300 |
-
|
301 |
-
# Create the heatmap frame
|
302 |
-
heatmap_height = 100 # Adjust as needed
|
303 |
-
heatmap_frame = np.zeros((heatmap_height, width, 4))
|
304 |
-
|
305 |
-
# Fill the heatmap sections
|
306 |
-
heatmap_frame[:heatmap_height//3, :] = color_embeddings
|
307 |
-
heatmap_frame[heatmap_height//3:2*heatmap_height//3, :] = color_posture
|
308 |
-
heatmap_frame[2*heatmap_height//3:, :] = color_voice
|
309 |
-
|
310 |
-
return (heatmap_frame * 255).astype(np.uint8)
|
311 |
-
|
312 |
-
def combine_video_and_heatmap(t):
|
313 |
-
video_frame = video.get_frame(t)
|
314 |
-
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width)
|
315 |
-
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
316 |
-
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
317 |
-
return combined_frame
|
318 |
-
|
319 |
-
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
320 |
-
final_clip = final_clip.set_audio(video.audio)
|
321 |
-
|
322 |
-
# Write the final video
|
323 |
-
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
324 |
-
|
325 |
-
# Close the video clips
|
326 |
-
video.close()
|
327 |
-
final_clip.close()
|
328 |
-
|
329 |
-
if os.path.exists(heatmap_video_path):
|
330 |
-
print(f"Heatmap video created at: {heatmap_video_path}")
|
331 |
-
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
332 |
-
return heatmap_video_path
|
333 |
-
else:
|
334 |
-
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
335 |
-
return None
|
336 |
-
|
337 |
-
|
338 |
-
# Function to create the correlation heatmap
|
339 |
-
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
340 |
-
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
341 |
-
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
|
342 |
-
corr = df.corr()
|
343 |
-
|
344 |
-
plt.figure(figsize=(10, 8), dpi=300)
|
345 |
-
|
346 |
-
heatmap = sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
|
347 |
-
plt.title('Correlation Heatmap of MSEs')
|
348 |
-
plt.tight_layout()
|
349 |
-
return plt.gcf()
|
|
|
216 |
plt.tight_layout()
|
217 |
plt.close()
|
218 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|