Spaces:
Runtime error
Runtime error
Update visualization.py
Browse files- visualization.py +1 -26
visualization.py
CHANGED
@@ -70,7 +70,6 @@ def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_thre
|
|
70 |
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
|
71 |
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
|
72 |
|
73 |
-
# Rest of the function remains the same
|
74 |
median = np.median(mse_values)
|
75 |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
76 |
|
@@ -88,32 +87,8 @@ def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_thre
|
|
88 |
mse_values[anomalies]))
|
89 |
anomaly_data.sort(key=lambda x: x[1])
|
90 |
|
91 |
-
grouped_anomalies = []
|
92 |
-
current_group = []
|
93 |
-
for timecode, sec, mse in anomaly_data:
|
94 |
-
if not current_group or sec - current_group[-1][1] <= time_threshold:
|
95 |
-
current_group.append((timecode, sec, mse))
|
96 |
-
else:
|
97 |
-
grouped_anomalies.append(current_group)
|
98 |
-
current_group = [(timecode, sec, mse)]
|
99 |
-
if current_group:
|
100 |
-
grouped_anomalies.append(current_group)
|
101 |
-
|
102 |
-
for group in grouped_anomalies:
|
103 |
-
start_sec = group[0][1]
|
104 |
-
end_sec = group[-1][1]
|
105 |
-
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
|
106 |
-
facecolor='red', alpha=0.2, zorder=1)
|
107 |
-
ax.add_patch(rect)
|
108 |
-
|
109 |
-
for group in grouped_anomalies:
|
110 |
-
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
111 |
-
timecode, sec, mse = highest_mse_anomaly
|
112 |
-
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
113 |
-
ha='center', fontsize=6, color='red')
|
114 |
-
|
115 |
max_seconds = df['Seconds'].max()
|
116 |
-
num_ticks =
|
117 |
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
118 |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
119 |
|
|
|
70 |
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
|
71 |
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
|
72 |
|
|
|
73 |
median = np.median(mse_values)
|
74 |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
75 |
|
|
|
87 |
mse_values[anomalies]))
|
88 |
anomaly_data.sort(key=lambda x: x[1])
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
max_seconds = df['Seconds'].max()
|
91 |
+
num_ticks = 80
|
92 |
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
93 |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
94 |
|