Update visualization.py
Browse files- visualization.py +37 -99
visualization.py
CHANGED
@@ -7,7 +7,7 @@ import seaborn as sns
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
import cv2
|
10 |
-
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip
|
11 |
from moviepy.video.fx.all import resize
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
from matplotlib.patches import Rectangle
|
@@ -216,107 +216,45 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
216 |
plt.close()
|
217 |
return fig
|
218 |
|
219 |
-
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
220 |
-
print(f"Creating heatmap video. Output folder: {output_folder}")
|
221 |
-
|
222 |
-
os.makedirs(output_folder, exist_ok=True)
|
223 |
-
|
224 |
-
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
225 |
-
heatmap_video_path = os.path.join(output_folder, output_filename)
|
226 |
-
|
227 |
-
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
228 |
-
|
229 |
-
# Load the original video
|
230 |
-
video = VideoFileClip(video_path)
|
231 |
-
|
232 |
-
# Get video properties
|
233 |
-
width, height = video.w, video.h
|
234 |
-
total_frames = int(video.duration * video.fps)
|
235 |
-
|
236 |
-
# Ensure all MSE arrays have the same length as total_frames
|
237 |
-
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
238 |
-
np.arange(len(mse_embeddings)), mse_embeddings)
|
239 |
-
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
|
240 |
-
np.arange(len(mse_posture)), mse_posture)
|
241 |
-
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
|
242 |
-
np.arange(len(mse_voice)), mse_voice)
|
243 |
-
|
244 |
-
# Normalize the MSE values
|
245 |
-
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
|
246 |
-
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
|
247 |
-
mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
|
248 |
-
|
249 |
-
combined_mse = np.full((3, total_frames), np.nan)
|
250 |
-
combined_mse[0] = mse_embeddings_norm
|
251 |
-
combined_mse[1] = mse_posture_norm
|
252 |
-
combined_mse[2] = mse_voice_norm
|
253 |
-
|
254 |
-
# Create custom colormap
|
255 |
-
cdict = {
|
256 |
-
'red': [(0.0, 0.5, 0.5), (1.0, 1.0, 1.0)],
|
257 |
-
'green': [(0.0, 0.5, 0.5), (1.0, 0.0, 0.0)],
|
258 |
-
'blue': [(0.0, 0.5, 0.5), (1.0, 0.0, 0.0)],
|
259 |
-
}
|
260 |
-
custom_cmap = LinearSegmentedColormap('custom_cmap', segmentdata=cdict, N=256)
|
261 |
-
|
262 |
-
fig, ax = plt.subplots(figsize=(width/100, 2))
|
263 |
-
im = ax.imshow(combined_mse, aspect='auto', cmap=custom_cmap, extent=[0, total_frames, 0, 3], vmin=0, vmax=1)
|
264 |
-
ax.set_yticks([0.5, 1.5, 2.5])
|
265 |
-
ax.set_yticklabels(['Face', 'Posture', 'Voice'])
|
266 |
-
ax.set_xticks([])
|
267 |
-
plt.tight_layout()
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
ax.lines.pop(0)
|
275 |
-
ax.axvline(x=frame_count, color='blue', linewidth=2)
|
276 |
-
|
277 |
-
canvas = FigureCanvasAgg(fig)
|
278 |
-
canvas.draw()
|
279 |
-
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
|
280 |
-
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
281 |
-
return heatmap_img
|
282 |
-
|
283 |
-
def add_timecode(frame, t):
|
284 |
-
seconds = t
|
285 |
-
timecode = f"{int(seconds//3600):02d}:{int((seconds%3600)//60):02d}:{int(seconds%60):02d}"
|
286 |
-
|
287 |
-
pil_img = Image.fromarray(frame.astype('uint8'))
|
288 |
-
draw = ImageDraw.Draw(pil_img)
|
289 |
-
font = ImageFont.load_default()
|
290 |
-
draw.text((10, 30), f"Time: {timecode}", font=font, fill=(255, 255, 255))
|
291 |
-
|
292 |
-
return np.array(pil_img)
|
293 |
-
|
294 |
-
heatmap_clip = VideoClip(create_heatmap, duration=video.duration)
|
295 |
-
heatmap_clip = heatmap_clip.resize(height=200)
|
296 |
-
|
297 |
-
def combine_video_and_heatmap(t):
|
298 |
-
video_frame = video.get_frame(t)
|
299 |
-
heatmap_frame = heatmap_clip.get_frame(t)
|
300 |
-
combined_frame = np.vstack((video_frame, heatmap_frame))
|
301 |
-
return add_timecode(combined_frame, t)
|
302 |
-
|
303 |
-
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
304 |
-
final_clip = final_clip.set_audio(video.audio)
|
305 |
-
|
306 |
-
# Write the final video
|
307 |
-
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
308 |
-
|
309 |
-
# Close the video clips
|
310 |
-
video.close()
|
311 |
-
final_clip.close()
|
312 |
|
313 |
-
if
|
314 |
-
|
315 |
-
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
316 |
-
return heatmap_video_path
|
317 |
else:
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
# Function to create the correlation heatmap
|
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
import cv2
|
10 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
|
11 |
from moviepy.video.fx.all import resize
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
from matplotlib.patches import Rectangle
|
|
|
216 |
plt.close()
|
217 |
return fig
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
def create_heatmap(frame_time, mse_embeddings, mse_posture, mse_voice):
|
221 |
+
fig = Figure(figsize=(10, 1))
|
222 |
+
canvas = FigureCanvas(fig)
|
223 |
+
ax = fig.add_subplot(111)
|
224 |
+
time_index = int(frame_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
if time_index < len(mse_embeddings) and time_index < len(mse_posture) and time_index < len(mse_voice):
|
227 |
+
mse_values = [mse_embeddings[time_index], mse_posture[time_index], mse_voice[time_index]]
|
|
|
|
|
228 |
else:
|
229 |
+
mse_values = [0, 0, 0] # Default values if the index is out of bounds
|
230 |
+
|
231 |
+
ax.barh(['Face', 'Posture', 'Voice'], mse_values, color=['navy', 'purple', 'green'])
|
232 |
+
ax.set_xlim(0, 1) # Normalize the MSE values
|
233 |
+
|
234 |
+
canvas.draw()
|
235 |
+
img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
|
236 |
+
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
237 |
+
plt.close(fig)
|
238 |
+
return img
|
239 |
+
|
240 |
+
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, fps, largest_cluster):
|
241 |
+
original_clip = VideoFileClip(video_path)
|
242 |
+
duration = original_clip.duration
|
243 |
+
heatmap_clips = []
|
244 |
+
|
245 |
+
for t in np.arange(0, duration, 1.0 / fps):
|
246 |
+
heatmap_img = create_heatmap(t, mse_embeddings, mse_posture, mse_voice)
|
247 |
+
heatmap_img_bgr = cv2.cvtColor(heatmap_img, cv2.COLOR_RGB2BGR)
|
248 |
+
heatmap_filename = os.path.join(output_folder, f"heatmap_{int(t * fps)}.png")
|
249 |
+
cv2.imwrite(heatmap_filename, heatmap_img_bgr)
|
250 |
+
heatmap_clips.append(ImageClip(heatmap_filename).set_duration(1.0 / fps).set_start(t).resize(height=100))
|
251 |
+
|
252 |
+
heatmap_clip = concatenate_videoclips(heatmap_clips, method="compose")
|
253 |
+
final_clip = CompositeVideoClip([original_clip, heatmap_clip.set_position(('center', 'bottom'))])
|
254 |
+
heatmap_video_path = os.path.join(output_folder, "heatmap_video.mp4")
|
255 |
+
final_clip.write_videofile(heatmap_video_path, codec='libx264', fps=fps, audio_codec='aac')
|
256 |
+
|
257 |
+
return heatmap_video_path
|
258 |
|
259 |
|
260 |
# Function to create the correlation heatmap
|