File size: 55,829 Bytes
73a3b01
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c82a74
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f073604
 
 
 
 
 
717964a
0c05143
66fee5f
 
 
 
f073604
 
717964a
 
 
 
 
7f3430b
c35991f
0c05143
 
1eb5eb0
7f3430b
 
 
 
2531994
7f3430b
 
90dee54
ccf185f
90dee54
 
7f3430b
ccf185f
 
2531994
7f3430b
 
1eb5eb0
c35991f
7f3430b
 
 
 
 
 
2531994
7f3430b
 
 
 
f073604
7f3430b
 
 
 
 
 
 
 
 
 
 
 
2531994
 
7f3430b
2531994
7f3430b
 
 
 
 
 
 
 
 
 
2531994
 
7f3430b
2531994
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3430b
2531994
7f3430b
2531994
 
 
 
 
 
 
 
 
 
 
7f3430b
 
 
 
 
 
 
 
 
2531994
 
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
0c05143
f8afb87
f073604
 
f8afb87
7f3430b
 
 
 
 
 
 
 
 
 
 
 
717964a
1eb5eb0
0c05143
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8afb87
 
 
 
cc994a5
f8afb87
 
 
 
7f250f0
f8afb87
 
 
 
 
 
 
7f3430b
f8afb87
 
7f3430b
f8afb87
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
f073604
 
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8afb87
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f7a44
2531994
 
 
 
 
 
 
21f7a44
 
2531994
7f3430b
 
 
 
 
 
 
 
0c05143
 
7f3430b
 
 
21f7a44
 
 
 
 
 
 
 
 
7f3430b
21f7a44
 
 
 
7f3430b
 
 
 
 
 
2531994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c05143
 
7f3430b
 
0c05143
 
1eb5eb0
 
 
 
 
 
 
 
0c05143
1eb5eb0
 
 
 
 
0c05143
1eb5eb0
f073604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb5eb0
f073604
0c05143
f125575
1eb5eb0
 
 
 
 
0c05143
1eb5eb0
f125575
 
1eb5eb0
 
 
 
 
 
 
 
 
f125575
1eb5eb0
 
 
 
 
7f3430b
 
f125575
7f3430b
f125575
7f3430b
 
 
 
 
 
 
 
 
 
 
 
1eb5eb0
f125575
0c05143
 
7f3430b
 
 
 
 
 
 
2531994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ea6f0
85c787a
2985c37
ccfee78
d790f10
2985c37
28c5ccf
 
7f2efad
 
 
2531994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3430b
ed253d8
 
 
7f3430b
ed253d8
 
 
 
 
7f3430b
ed253d8
7f3430b
ed253d8
7f3430b
ed253d8
7f3430b
ed253d8
 
 
 
 
 
7f3430b
ed253d8
7f3430b
ed253d8
 
 
 
7f3430b
ed253d8
7f3430b
ed253d8
7f3430b
ed253d8
7f3430b
 
 
 
 
 
 
2531994
 
 
 
 
 
7f3430b
 
 
 
2531994
 
 
 
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed253d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3430b
ed253d8
 
7f3430b
ed253d8
 
 
 
 
7f3430b
ed253d8
 
 
7f3430b
ed253d8
 
 
f8afb87
 
ed253d8
 
 
f8afb87
ed253d8
7f3430b
ed253d8
 
7f3430b
 
2531994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3430b
 
 
 
 
 
 
 
82ebc62
d919cf5
7f3430b
a2add61
 
d919cf5
0c05143
 
d919cf5
7f3430b
 
25328c1
 
9521104
 
02ceb47
d650995
02ceb47
 
 
7f3430b
83fd44d
 
9521104
fc3b2a9
83fd44d
 
 
 
 
 
3d17868
83fd44d
 
7ee5252
 
 
 
 
 
 
 
 
 
83fd44d
5370d53
 
 
 
 
8fa1e7e
7f3430b
 
 
0c05143
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3430b
0f9e27e
 
7f3430b
5bd2e9d
66fee5f
7f3430b
 
 
 
 
 
2531994
66fee5f
7f3430b
dfc72be
7f3430b
 
 
 
f993109
7f3430b
7f2efad
7f3430b
 
 
 
 
2531994
 
7f3430b
 
0041517
 
 
 
d28630a
ddc658a
ad46481
dfc72be
7f3430b
 
 
dfc72be
7f3430b
f8afb87
 
7f3430b
 
 
dfc72be
 
 
 
 
ad46481
dfc72be
7f3430b
 
 
f8afb87
 
 
 
 
7f3430b
 
 
 
dfc72be
 
 
 
 
f8afb87
7f3430b
 
55ee5d3
512594e
 
dfc72be
2531994
 
 
 
7f3430b
2531994
9521104
83fd44d
2531994
 
c5fb5c4
2531994
 
 
 
d650995
2531994
 
 
8fa1e7e
da4dbd8
 
28c5ccf
2985c37
 
28c5ccf
7f3430b
f8afb87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
from gradio_client import Client
import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from huggingface_hub import login
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from scipy.io.wavfile import write as write_wav
from pydub import AudioSegment
from string import punctuation
import librosa
from pathlib import Path
import torchaudio
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline


# Neo4j imports
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_community.document_loaders import HuggingFaceDatasetLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
from serpapi.google_search import GoogleSearch

#Parler TTS v1 Modules

import os
import re
import tempfile
import soundfile as sf
from string import punctuation
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor



#API AutoDate Fix Up
def get_current_date1():
    return datetime.now().strftime("%Y-%m-%d")

# Usage
current_date1 = get_current_date1()



# Set environment variables for CUDA
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'


hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
    print("Please set your Hugging Face token in the environment variables.")
else:
    login(token=hf_token)

logging.basicConfig(level=logging.DEBUG)


embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])


#Initialization

# Initialize the models
def initialize_phi_model():
    model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Phi-3.5-mini-instruct",
        device_map="cuda",
        torch_dtype="auto",
        trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
    return pipeline("text-generation", model=model, tokenizer=tokenizer)

def initialize_gpt_model():
    return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

def initialize_gpt4o_mini_model():
    return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')



    


# Initialize all models
phi_pipe = initialize_phi_model()
gpt_model = initialize_gpt_model()
gpt4o_mini_model = initialize_gpt4o_mini_model()













# Existing embeddings and vector store for GPT-4o
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
gpt_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=gpt_embeddings)
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})


from langchain_community.embeddings import FakeEmbeddings


# New vector store setup for Phi-3.5
# phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
phi_embeddings = FakeEmbeddings(size=1024)
phi_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=phi_embeddings)
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})





# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

index_name = "italyv109102024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
chat_model1 = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

# Prompt templates
def get_current_date():
    return datetime.now().strftime("%B %d, %Y")

current_date = get_current_date()

template1 = f"""You are an expert Italian speaker witg unrelah extensive knowledge of the language and culture. Your responses should be brief, to the point, and limited to one or two lines without providing excessive details. Please refrain from discussinted topics. Your signature phrase is, "It’s always a pleasure to assist you!"
Context: {{context}}
Question: {{question}}
Helpful Answer: """

# template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing the locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""



template2 =f"""You are an expert Italian speaker witg unrelah extensive knowledge of the language and culture. Your responses should be brief, to the point, and limited to one or two lines without providing excessive details. Please refrain from discussinted topics. Your signature phrase is, "It’s always a pleasure to assist you!"
Context: {{context}}
Question: {{question}}
Helpful Answer: """


QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# Neo4j setup
graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
                    username="neo4j",
                    password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
                    )
# Avoid pushing the graph documents to Neo4j every time
# Only push the documents once and comment the code below after the initial push
# dataset_name = "Pijush2023/birmindata07312024"
# page_content_column = 'events_description'
# loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# data = loader.load()

# text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# documents = text_splitter.split_documents(data)

# llm_transformer = LLMGraphTransformer(llm=chat_model)
# graph_documents = llm_transformer.convert_to_graph_documents(documents)
# graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)

# class Entities(BaseModel):
#     names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")

# entity_prompt = ChatPromptTemplate.from_messages([
#     ("system", "You are extracting organization and person entities from the text."),
#     ("human", "Use the given format to extract information from the following input: {question}"),
# ])

# entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

# def remove_lucene_chars(input: str) -> str:
#     return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
#                                           "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
#                                           "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
#                                           ";": r"\;", " ": r"\ "}))

# def generate_full_text_query(input: str) -> str:
#     full_text_query = ""
#     words = [el for el in remove_lucene_chars(input).split() if el]
#     for word in words[:-1]:
#         full_text_query += f" {word}~2 AND"
#     full_text_query += f" {words[-1]}~2"
#     return full_text_query.strip()

# def structured_retriever(question: str) -> str:
#     result = ""
#     entities = entity_chain.invoke({"question": question})
#     for entity in entities.names:
#         response = graph.query(
#             """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
#             YIELD node,score
#             CALL {
#               WITH node
#               MATCH (node)-[r:!MENTIONS]->(neighbor)
#               RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
#               UNION ALL
#               WITH node
#               MATCH (node)<-[r:!MENTIONS]-(neighbor)
#               RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
#             }
#             RETURN output LIMIT 50
#             """,
#             {"query": generate_full_text_query(entity)},
#         )
#         result += "\n".join([el['output'] for el in response])
#     return result

# def retriever_neo4j(question: str):
#     structured_data = structured_retriever(question)
#     logging.debug(f"Structured data: {structured_data}")
#     return structured_data

# _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
# in its original language.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""

# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

# def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
#     buffer = []
#     for human, ai in chat_history:
#         buffer.append(HumanMessage(content=human))
#         buffer.append(AIMessage(content=ai))
#     return buffer

# _search_query = RunnableBranch(
#     (
#         RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
#             run_name="HasChatHistoryCheck"
#         ),
#         RunnablePassthrough.assign(
#             chat_history=lambda x: _format_chat_history(x["chat_history"])
#         )
#         | CONDENSE_QUESTION_PROMPT
#         | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
#         | StrOutputParser(),
#     ),
#     RunnableLambda(lambda x : x["question"]),
# )

# # template = """Answer the question based only on the following context:
# # {context}
# # Question: {question}
# # Use natural language and be concise.
# # Answer:"""

# template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""

# qa_prompt = ChatPromptTemplate.from_template(template)

# chain_neo4j = (
#     RunnableParallel(
#         {
#             "context": _search_query | retriever_neo4j,
#             "question": RunnablePassthrough(),
#         }
#     )
#     | qa_prompt
#     | chat_model
#     | StrOutputParser()
# )







phi_custom_template = """
<|system|>
You are an expert Italian speaker with extensive knowledge of the language and culture. 
Your responses should be brief, to the point, and limited to one or two lines without providing excessive details. 
Please refrain from discussing unrelated topics. Your signature phrase is, "It’s always a pleasure to assist you!"<|end|>
<|user|>
{context}
Question: {question}<|end|>
<|assistant|>
Sure! Here's the information you requested:
"""


def generate_bot_response(history, choice, retrieval_mode, model_choice):
    if not history:
        return

    # Select the model
    # selected_model = chat_model if model_choice == "LM-1" else phi_pipe
    selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe)


    response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
    history[-1][1] = ""

    for character in response:
        history[-1][1] += character
        yield history  # Stream each character as it is generated
        time.sleep(0.05)  # Add a slight delay to simulate streaming

    yield history  # Final yield with the complete response







def generate_tts_response(response, tts_choice):
    with concurrent.futures.ThreadPoolExecutor() as executor:
        if tts_choice == "Alpha":
            audio_future = executor.submit(generate_audio_elevenlabs, response)
        elif tts_choice == "Beta":
            audio_future = executor.submit(generate_audio_parler_tts, response)
        # elif tts_choice == "Gamma":
        #     audio_future = executor.submit(generate_audio_mars5, response)

        audio_path = audio_future.result()
        return audio_path





import concurrent.futures
# Existing bot function with concurrent futures for parallel processing
def bot(history, choice, tts_choice, retrieval_mode, model_choice):
    # Initialize an empty response
    response = ""

    # Create a thread pool to handle both text generation and TTS conversion in parallel
    with concurrent.futures.ThreadPoolExecutor() as executor:
        # Start the bot response generation in parallel
        bot_future = executor.submit(generate_bot_response, history, choice, retrieval_mode, model_choice)

        # Wait for the text generation to start
        for history_chunk in bot_future.result():
            response = history_chunk[-1][1]  # Update the response with the current state
            yield history_chunk, None  # Stream the text output as it's generated

        # Once text is fully generated, start the TTS conversion
        tts_future = executor.submit(generate_tts_response, response, tts_choice)

        # Get the audio output after TTS is done
        audio_path = tts_future.result()

        # Stream the final text and audio output
        yield history, audio_path







# Modified bot function to separate chatbot response and TTS generation

def generate_bot_response(history, choice, retrieval_mode, model_choice):
    if not history:
        return

    # Select the model
    # selected_model = chat_model if model_choice == "LM-1" else phi_pipe
    selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe)


    response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
    history[-1][1] = ""

    for character in response:
        history[-1][1] += character
        yield history  # Stream each character as it is generated
        time.sleep(0.05)  # Add a slight delay to simulate streaming

    yield history  # Final yield with the complete response




def generate_audio_after_text(response, tts_choice):
    # Generate TTS audio after text response is completed
    with concurrent.futures.ThreadPoolExecutor() as executor:
        tts_future = executor.submit(generate_tts_response, response, tts_choice)
        audio_path = tts_future.result()
        return audio_path

import re

def clean_response(response_text):
    # Remove system and user tags
    response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
    response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
    response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL)

    # Clean up the text by removing extra whitespace
    cleaned_response = response_text.strip()
    cleaned_response = re.sub(r'\s+', ' ', cleaned_response)

    # Ensure the response is conversational and organized
    cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.')

    return cleaned_response

# Define a new template specifically for GPT-4o-mini in VDB Details mode
gpt4o_mini_template_details = f"""You’re an expert in Italian culture and language with a deep understanding of various topics related to Italy, including history, cuisine, art, and traditions. Your role is to provide clear and concise responses in Italian while remaining focused strictly on the question at hand.
Your task is to answer questions posed to you. Here are the details about the inquiries I would like you to address:
- Topic:
- Specific Question:
- Context (if any):

Please ensure that your answers remain relevant to the topic and avoid discussing unrelated subjects.
{{context}}
Question: {{question}}
Helpful Answer:"""



import traceback

def generate_answer(message, choice, retrieval_mode, selected_model):
    logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")

    # Logic for disabling options for Phi-3.5
    if selected_model == "LM-2":
        choice = None
        retrieval_mode = None

    # try:
    #     # Select the appropriate template based on the choice
    #     if choice == "Details":
    #         prompt_template = QA_CHAIN_PROMPT_1
    #     elif choice == "Conversational":
    #         prompt_template = QA_CHAIN_PROMPT_2
    #     else:
    #         prompt_template = QA_CHAIN_PROMPT_1  # Fallback to template1

    try:
        # Select the appropriate template based on the choice and model
        if choice == "Details" and selected_model == chat_model1:  # GPT-4o-mini
            prompt_template = PromptTemplate(input_variables=["context", "question"], template=gpt4o_mini_template_details)
        elif choice == "Details":
            prompt_template = QA_CHAIN_PROMPT_1
        elif choice == "Conversational":
            prompt_template = QA_CHAIN_PROMPT_2
        else:
            prompt_template = QA_CHAIN_PROMPT_1  # Fallback to template1

        # # Handle hotel-related queries
        # if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
        #     logging.debug("Handling hotel-related query")
        #     response = fetch_google_hotels()
        #     logging.debug(f"Hotel response: {response}")
        #     return response, extract_addresses(response)

        # # Handle restaurant-related queries
        # if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
        #     logging.debug("Handling restaurant-related query")
        #     response = fetch_yelp_restaurants()
        #     logging.debug(f"Restaurant response: {response}")
        #     return response, extract_addresses(response)

        # # Handle flight-related queries
        # if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
        #     logging.debug("Handling flight-related query")
        #     response = fetch_google_flights()
        #     logging.debug(f"Flight response: {response}")
        #     return response, extract_addresses(response)

        # Retrieval-based response
        if retrieval_mode == "VDB":
            logging.debug("Using VDB retrieval mode")
            if selected_model == chat_model:
                logging.debug("Selected model: LM-1")
                retriever = gpt_retriever
                context = retriever.get_relevant_documents(message)
                logging.debug(f"Retrieved context: {context}")

                prompt = prompt_template.format(context=context, question=message)
                logging.debug(f"Generated prompt: {prompt}")

                qa_chain = RetrievalQA.from_chain_type(
                    llm=chat_model,
                    chain_type="stuff",
                    retriever=retriever,
                    chain_type_kwargs={"prompt": prompt_template}
                )
                response = qa_chain({"query": message})
                logging.debug(f"LM-1 response: {response}")
                return response['result'], extract_addresses(response['result'])
            
            elif selected_model == chat_model1:
                logging.debug("Selected model: LM-3")
                retriever = gpt_retriever
                context = retriever.get_relevant_documents(message)
                logging.debug(f"Retrieved context: {context}")

                prompt = prompt_template.format(context=context, question=message)
                logging.debug(f"Generated prompt: {prompt}")

                qa_chain = RetrievalQA.from_chain_type(
                    llm=chat_model1,
                    chain_type="stuff",
                    retriever=retriever,
                    chain_type_kwargs={"prompt": prompt_template}
                )
                response = qa_chain({"query": message})
                logging.debug(f"LM-3 response: {response}")
                return response['result'], extract_addresses(response['result']) 


            
            elif selected_model == phi_pipe:
                logging.debug("Selected model: LM-2")
                retriever = phi_retriever
                context_documents = retriever.get_relevant_documents(message)
                context = "\n".join([doc.page_content for doc in context_documents])
                logging.debug(f"Retrieved context for LM-2: {context}")

                # Use the correct template variable
                prompt = phi_custom_template.format(context=context, question=message)
                logging.debug(f"Generated LM-2 prompt: {prompt}")

                response = selected_model(prompt, **{
                    "max_new_tokens": 400,
                    "return_full_text": True,
                    "temperature": 0.7,
                    "do_sample": True,
                })

                if response:
                    generated_text = response[0]['generated_text']
                    logging.debug(f"LM-2 Response: {generated_text}")
                    cleaned_response = clean_response(generated_text)
                    return cleaned_response, extract_addresses(cleaned_response)
                else:
                    logging.error("LM-2 did not return any response.")
                    return "No response generated.", []

        elif retrieval_mode == "KGF":
            logging.debug("Using KGF retrieval mode")
            response = chain_neo4j.invoke({"question": message})
            logging.debug(f"KGF response: {response}")
            return response, extract_addresses(response)
        else:
            logging.error("Invalid retrieval mode selected.")
            return "Invalid retrieval mode selected.", []

    except Exception as e:
        logging.error(f"Error in generate_answer: {str(e)}")
        logging.error(traceback.format_exc())
        return "Sorry, I encountered an error while processing your request.", []







def add_message(history, message):
    history.append((message, None))
    return history, gr.Textbox(value="", interactive=True, show_label=False)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

# def extract_addresses(response):
#     if not isinstance(response, str):
#         response = str(response)
#     address_patterns = [
#         r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
#         r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
#         r'([A-Z].*,\sAL\s\d{5})',
#         r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
#         r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
#         r'(\d{2}.*\sStreets)',
#         r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
#         r'([a-zA-Z]\s Birmingham)',
#         r'([a-zA-Z].*,\sBirmingham,\sAL)',
#         r'(.*),(Birmingham, AL,USA)$'
#         r'(^Birmingham,AL$)',
#         r'((.*)(Stadium|Field),.*,\sAL$)',
#         r'((.*)(Stadium|Field),.*,\sFL$)',
#         r'((.*)(Stadium|Field),.*,\sMS$)',
#         r'((.*)(Stadium|Field),.*,\sAR$)',
#         r'((.*)(Stadium|Field),.*,\sKY$)',
#         r'((.*)(Stadium|Field),.*,\sTN$)',
#         r'((.*)(Stadium|Field),.*,\sLA$)',
#         r'((.*)(Stadium|Field),.*,\sFL$)'

#     ]
#     addresses = []
#     for pattern in address_patterns:
#         addresses.extend(re.findall(pattern, response))
#     return addresses

# all_addresses = []

# def generate_map(location_names):
#     global all_addresses
#     all_addresses.extend(location_names)

#     api_key = os.environ['GOOGLEMAPS_API_KEY']
#     gmaps = GoogleMapsClient(key=api_key)

#     m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)

#     for location_name in all_addresses:
#         geocode_result = gmaps.geocode(location_name)
#         if geocode_result:
#             location = geocode_result[0]['geometry']['location']
#             folium.Marker(
#                 [location['lat'], location['lng']],
#                 tooltip=f"{geocode_result[0]['formatted_address']}"
#             ).add_to(m)

#     map_html = m._repr_html_()
#     return map_html

# from diffusers import DiffusionPipeline
# import torch




    






# def fetch_local_news():
#     api_key = os.environ['SERP_API']
#     url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
#     response = requests.get(url)
#     if response.status_code == 200:
#         results = response.json().get("news_results", [])
#         news_html = """
#         <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
#         <style>
#             .news-item {
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#                 background-color: #f0f8ff;
#                 margin-bottom: 15px;
#                 padding: 10px;
#                 border-radius: 5px;
#                 transition: box-shadow 0.3s ease, background-color 0.3s ease;
#                 font-weight: bold;
#             }
#             .news-item:hover {
#                 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
#                 background-color: #e6f7ff;
#             }
#             .news-item a {
#                 color: #1E90FF;
#                 text-decoration: none;
#                 font-weight: bold;
#             }
#             .news-item a:hover {
#                 text-decoration: underline;
#             }
#             .news-preview {
#                 position: absolute;
#                 display: none;
#                 border: 1px solid #ccc;
#                 border-radius: 5px;
#                 box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
#                 background-color: white;
#                 z-index: 1000;
#                 max-width: 300px;
#                 padding: 10px;
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#             }
#         </style>
#         <script>
#             function showPreview(event, previewContent) {
#                 var previewBox = document.getElementById('news-preview');
#                 previewBox.innerHTML = previewContent;
#                 previewBox.style.left = event.pageX + 'px';
#                 previewBox.style.top = event.pageY + 'px';
#                 previewBox.style.display = 'block';
#             }
#             function hidePreview() {
#                 var previewBox = document.getElementById('news-preview');
#                 previewBox.style.display = 'none';
#             }
#         </script>
#         <div id="news-preview" class="news-preview"></div>
#         """
#         for index, result in enumerate(results[:7]):
#             title = result.get("title", "No title")
#             link = result.get("link", "#")
#             snippet = result.get("snippet", "")
#             news_html += f"""
#             <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
#                 <a href='{link}' target='_blank'>{index + 1}. {title}</a>
#                 <p>{snippet}</p>
#             </div>
#             """
#         return news_html
#     else:
#         return "<p>Failed to fetch local news</p>"

import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor

model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

base_audio_drive = "/data/audio"

#Normal Code with sample rate is 44100 Hz

def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    y = y.astype(np.float32) / np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

    full_text = result.get("text","")

    return stream, full_text, result







# def update_map_with_response(history):
#     if not history:
#         return ""
#     response = history[-1][1]
#     addresses = extract_addresses(response)
#     return generate_map(addresses)

def clear_textbox():
    return ""

# def show_map_if_details(history, choice):
#     if choice in ["Details", "Conversational"]:
#         return gr.update(visible=True), update_map_with_response(history)
#     else:
#         return gr.update(visible(False), "")








def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        audio_segments = []
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
                    audio_segments.append(chunk)
            temp_audio_path = f.name

        # Combine all audio chunks into a single file
        combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
        combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
        combined_audio.export(combined_audio_path, format="mp3")

        logging.debug(f"Audio saved to {combined_audio_path}")
        return combined_audio_path
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None




# chunking audio and then Process

import concurrent.futures
import tempfile
import os
import numpy as np
import logging
from queue import Queue
from threading import Thread
from scipy.io.wavfile import write as write_wav
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
from transformers import AutoTokenizer

# Ensure your device is set to CUDA
device = "cuda:0" if torch.cuda.is_available() else "cpu"

repo_id = "parler-tts/parler-tts-mini-v1"

def generate_audio_parler_tts(text):
    description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
    chunk_size_in_s = 0.5

    # Initialize the tokenizer and model
    parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
    parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
    sampling_rate = parler_model.audio_encoder.config.sampling_rate
    frame_rate = parler_model.audio_encoder.config.frame_rate

    def generate(text, description, play_steps_in_s=0.5):
        play_steps = int(frame_rate * play_steps_in_s)
        streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps)

        inputs = parler_tokenizer(description, return_tensors="pt").to(device)
        prompt = parler_tokenizer(text, return_tensors="pt").to(device)

        generation_kwargs = dict(
            input_ids=inputs.input_ids,
            prompt_input_ids=prompt.input_ids,
            attention_mask=inputs.attention_mask,
            prompt_attention_mask=prompt.attention_mask,
            streamer=streamer,
            do_sample=True,
            temperature=1.0,
            min_new_tokens=10,
        )

        thread = Thread(target=parler_model.generate, kwargs=generation_kwargs)
        thread.start()

        for new_audio in streamer:
            if new_audio.shape[0] == 0:
                break
            # Save or process each audio chunk as it is generated
            yield sampling_rate, new_audio

    audio_segments = []
    for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
        audio_segments.append(audio_chunk)

        temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav")
        write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32))
        logging.debug(f"Saved chunk to {temp_audio_path}")


    # Combine all the audio chunks into one audio file
    combined_audio = np.concatenate(audio_segments)
    combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav")

    write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32))

    logging.debug(f"Combined audio saved to {combined_audio_path}")
    return combined_audio_path


# def fetch_local_events():
#     api_key = os.environ['SERP_API']
#     url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
#     response = requests.get(url)
#     if response.status_code == 200:
#         events_results = response.json().get("events_results", [])
#         events_html = """
#         <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
#         <style>
#             table {
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#                 border-collapse: collapse;
#                 width: 100%;
#             }
#             th, td {
#                 border: 1px solid #fff !important;
#                 padding: 8px;
#             }
#             th {
#                 background-color: #f2f2f2;
#                 color: #333;
#                 text-align: left;
#             }
#             tr:hover {
#                 background-color: #f5f5f5;
#             }
#             .event-link {
#                 color: #1E90FF;
#                 text-decoration: none;
#             }
#             .event-link:hover {
#                 text-decoration: underline;
#             }
#         </style>
#         <table>
#             <tr>
#                 <th>Title</th>
#                 <th>Date and Time</th>
#                 <th>Location</th>
#             </tr>
#         """
#         for event in events_results:
#             title = event.get("title", "No title")
#             date_info = event.get("date", {})
#             date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
#             location = event.get("address", "No location")
#             if isinstance(location, list):
#                 location = " ".join(location)
#             location = location.replace("[", "").replace("]", "")
#             link = event.get("link", "#")
#             events_html += f"""
#             <tr>
#                 <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
#                 <td>{date}</td>
#                 <td>{location}</td>
#             </tr>
#             """
#         events_html += "</table>"
#         return events_html
#     else:
#         return "<p>Failed to fetch local events</p>"

# def get_weather_icon(condition):
#     condition_map = {
#         "Clear": "c01d",
#         "Partly Cloudy": "c02d",
#         "Cloudy": "c03d",
#         "Overcast": "c04d",
#         "Mist": "a01d",
#         "Patchy rain possible": "r01d",
#         "Light rain": "r02d",
#         "Moderate rain": "r03d",
#         "Heavy rain": "r04d",
#         "Snow": "s01d",
#         "Thunderstorm": "t01d",
#         "Fog": "a05d",
#     }
#     return condition_map.get(condition, "c04d")

# def fetch_local_weather():
#     try:
#         api_key = os.environ['WEATHER_API']
#         url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
#         response = requests.get(url)
#         response.raise_for_status()
#         jsonData = response.json()

#         current_conditions = jsonData.get("currentConditions", {})
#         temp_celsius = current_conditions.get("temp", "N/A")

#         if temp_celsius != "N/A":
#             temp_fahrenheit = int((temp_celsius * 9/5) + 32)
#         else:
#             temp_fahrenheit = "N/A"

#         condition = current_conditions.get("conditions", "N/A")
#         humidity = current_conditions.get("humidity", "N/A")

#         weather_html = f"""
#         <div class="weather-theme">
#             <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
#             <div class="weather-content">
#                 <div class="weather-icon">
#                     <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
#                 </div>
#                 <div class="weather-details">
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
#                 </div>
#             </div>
#         </div>
#         <style>
#             .weather-theme {{
#                 animation: backgroundAnimation 10s infinite alternate;
#                 border-radius: 10px;
#                 padding: 10px;
#                 margin-bottom: 15px;
#                 background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
#                 background-size: 400% 400%;
#                 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
#                 transition: box-shadow 0.3s ease, background-color 0.3s ease;
#             }}
#             .weather-theme:hover {{
#                 box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
#                 background-position: 100% 100%;
#             }}
#             @keyframes backgroundAnimation {{
#                 0% {{ background-position: 0% 50%; }}
#                 100% {{ background-position: 100% 50%; }}
#             }}
#             .weather-content {{
#                 display: flex;
#                 align-items: center;
#             }}
#             .weather-icon {{
#                 flex: 1;
#             }}
#             .weather-details {{
#                 flex 3;
#             }}
#         </style>
#         """
#         return weather_html
#     except requests.exceptions.RequestException as e:
#         return f"<p>Failed to fetch local weather: {e}</p>"


def handle_retrieval_mode_change(choice):
    if choice == "KGF":
        return gr.update(interactive=False), gr.update(interactive=False)
    else:
        return gr.update(interactive=True), gr.update(interactive=True)



def handle_model_choice_change(selected_model):
    if selected_model == "LM-2":
        # Disable retrieval mode and select style when LM-2 is selected
        return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
    elif selected_model == "LM-1":
        # Enable retrieval mode and select style for LM-1
        return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
    else:
        # Default case: allow interaction
        return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)

#Flux Coding


# Existing prompts for the Flux API
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"

# Function to call the Flux API and generate images
def generate_image_flux(prompt):
    # client = Client("black-forest-labs/FLUX.1-schnell",hf_token=hf_token)
    client = Client("Pijush2023/radar_flux")
    result = client.predict(
        prompt=prompt,
        seed=0,
        randomize_seed=True,
        width=400,
        height=400,
        num_inference_steps=2,
        api_name="/infer"
    )
    
    # Assuming that the API response contains an image file or URL, extract the image part
    if isinstance(result, tuple):
        # Extract the image URL or path if it is a tuple
        image_path_or_url = result[0]  # Adjust this index based on the actual structure of the response
    else:
        image_path_or_url = result
    
    return image_path_or_url  # Return the image path or URL directly

# Function to update images with the three prompts
def update_images():
    image_1 = generate_image_flux(hardcoded_prompt_1)
    image_2 = generate_image_flux(hardcoded_prompt_2)
    image_3 = generate_image_flux(hardcoded_prompt_3)
    return image_1, image_2, image_3





def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
    return f"""
    {name}
    - Link: {link}
    - Location: {location}
    - Contact No: {phone}
    - Rating: {rating} stars ({reviews} reviews)
    - Snippet: {snippet}
    """

def fetch_yelp_restaurants():
    # Introductory prompt for restaurants
    intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:"

    params = {
        "engine": "yelp",
        "find_desc": "Restaurant",
        "find_loc": "Birmingham, AL, USA",
        "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    organic_results = results.get("organic_results", [])

    response_text = f"{intro_prompt}\n"

    for result in organic_results[:5]:  # Limiting to top 5 restaurants
        name = result.get("title", "No name")
        rating = result.get("rating", "No rating")
        reviews = result.get("reviews", "No reviews")
        phone = result.get("phone", "Not Available")
        snippet = result.get("snippet", "Not Available")
        location = f"{name}, Birmingham, AL,USA"
        link = result.get("link", "#")

        response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet)


    return response_text






def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities):
    return f"""
    {name}
    - Link: {link}
    - Location: {location}
    - Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate})
    - Check-in Time: {check_in_time}
    - Check-out Time: {check_out_time}
    - Amenities: {amenities}
    - Description: {description}
    """

def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2):
    # Introductory prompt for hotels
    intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:"

    params = {
        "engine": "google_hotels",
        "q": query,
        "check_in_date": check_in,
        "check_out_date": check_out,
        "adults": str(adults),
        "currency": "USD",
        "gl": "us",
        "hl": "en",
        "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    hotel_results = results.get("properties", [])

    hotel_info = f"{intro_prompt}\n"
    for hotel in hotel_results[:5]:  # Limiting to top 5 hotels
        name = hotel.get('name', 'No name')
        description = hotel.get('description', 'No description')
        link = hotel.get('link', '#')
        check_in_time = hotel.get('check_in_time', 'N/A')
        check_out_time = hotel.get('check_out_time', 'N/A')
        rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A')
        before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A')
        total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A')
        amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available"

        location = f"{name}, Birmingham, AL,USA"

        hotel_info += format_hotel_info(
            name,
            link,
            location,
            rate_per_night,
            total_rate,
            description,
            check_in_time,
            check_out_time,
            amenities
        )


    return hotel_info




def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane):
    return f"""
    Flight {flight_number}
    - Departure: {departure_airport} at {departure_time}
    - Arrival: {arrival_airport} at {arrival_time}
    - Duration: {duration} minutes
    - Airplane: {airplane}
    """

def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"):
    # Introductory prompt for flights
    intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:"

    params = {
        "engine": "google_flights",
        "departure_id": departure_id,
        "arrival_id": arrival_id,
        "outbound_date": outbound_date,
        "return_date": return_date,
        "currency": "USD",
        "hl": "en",
        "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()

    # Extract flight details from the results
    best_flights = results.get('best_flights', [])
    flight_info = f"{intro_prompt}\n"

    # Process each flight in the best_flights list
    for i, flight in enumerate(best_flights, start=1):
        for segment in flight.get('flights', []):
            departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport')
            departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time')
            arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport')
            arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time')
            duration = segment.get('duration', 'Unknown Duration')
            airplane = segment.get('airplane', 'Unknown Airplane')

            # Format the flight segment details
            flight_info += format_flight_info(
                flight_number=i,
                departure_airport=departure_airport,
                departure_time=departure_time,
                arrival_airport=arrival_airport,
                arrival_time=arrival_time,
                duration=duration,
                airplane=airplane
            )


    return flight_info


# examples = [
#     [
#         "What are the concerts in Birmingham?",
#     ],
#     [
#         "what are some of the upcoming matches of crimson tide?",
#     ],
#     [
#         "where from i will get a Hamburger?",
#     ],
#     [
#         "What are some of the hotels at birmingham?",
#     ],
#     [
#         "how can i connect the alexa to the radio?"
#     ],
#     [
#       "What are some of the good clubs at birmingham?"  
#     ],
#     [
#       "How do I call the radio station?",
#     ],
#     [
#         "What’s the spread?"
#     ],
#     [
#         "What time is Crimson Tide Rewind?"
#     ],
#     [
#         "What time is Alabama kick-off?"
#     ],
#     [
#         "who are some of the popular players of crimson tide?"
#     ]
# ]

# # Function to insert the prompt into the textbox when clicked
# def insert_prompt(current_text, prompt):
#     return prompt[0] if prompt else current_text



with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:

   
    with gr.Row():
        with gr.Column():
            state = gr.State()

            chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
            choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
            retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB"], value="VDB")
            model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2", "LM-3"], value="LM-1")

            # Link the dropdown change to handle_model_choice_change
            model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])

            gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")

            chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
            tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
        
            retriever_button = gr.Button("Retriever")

            clear_button = gr.Button("Clear")
            clear_button.click(lambda: [None, None], outputs=[chat_input, state])

            # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
            # location_output = gr.HTML()
            audio_output = gr.Audio(interactive=False, autoplay=True)

            def stop_audio():
                audio_output.stop()
                return None

               
    
           

            retriever_sequence = (
                retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording")
                .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory")
                # First, generate the bot response
                .then(fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response")
                # Then, generate the TTS response based on the bot's response
                .then(fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response")
                .then(fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox")
            )






            

            chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording").then(
                fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory"
            ).then(
                # First, generate the bot response
                fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response"
            ).then(
                # Then, generate the TTS response based on the bot's response
                fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response"
            ).then(
                fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox"
            )







            audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
            audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="api_voice_to_text")
            
            # gr.Markdown("<h1 style='color: red;'>Example Prompts</h1>", elem_id="Example-Prompts")
            # gr.Examples(examples=examples, fn=insert_prompt,inputs=chat_input, outputs=chat_input)

        # with gr.Column():
        #     weather_output = gr.HTML(value=fetch_local_weather())
        #     news_output = gr.HTML(value=fetch_local_news())
        #     events_output = gr.HTML(value=fetch_local_events())

        # with gr.Column():
           
          
        #     # Call update_images during the initial load to display images when the interface appears
        #     initial_images = update_images()
            
        #     # Displaying the images generated using Flux API directly
        #     image_output_1 = gr.Image(value=initial_images[0], label="Image 1", elem_id="flux_image_1", width=400, height=400)
        #     image_output_2 = gr.Image(value=initial_images[1], label="Image 2", elem_id="flux_image_2", width=400, height=400)
        #     image_output_3 = gr.Image(value=initial_images[2], label="Image 3", elem_id="flux_image_3", width=400, height=400)
    
        #     # Refresh button to update images
        #     refresh_button = gr.Button("Refresh Images")
        #     refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
            




           

demo.queue()
demo.launch(show_error=True)