Spaces:
Paused
Paused
File size: 55,829 Bytes
73a3b01 7f3430b 3c82a74 7f3430b f073604 717964a 0c05143 66fee5f f073604 717964a 7f3430b c35991f 0c05143 1eb5eb0 7f3430b 2531994 7f3430b 90dee54 ccf185f 90dee54 7f3430b ccf185f 2531994 7f3430b 1eb5eb0 c35991f 7f3430b 2531994 7f3430b f073604 7f3430b 2531994 7f3430b 2531994 7f3430b 2531994 7f3430b 2531994 7f3430b 2531994 7f3430b 2531994 7f3430b 2531994 7f3430b 2531994 7f3430b 0c05143 f8afb87 f073604 f8afb87 7f3430b 717964a 1eb5eb0 0c05143 7f3430b f8afb87 cc994a5 f8afb87 7f250f0 f8afb87 7f3430b f8afb87 7f3430b f8afb87 7f3430b f073604 7f3430b f8afb87 7f3430b 21f7a44 2531994 21f7a44 2531994 7f3430b 0c05143 7f3430b 21f7a44 7f3430b 21f7a44 7f3430b 2531994 0c05143 7f3430b 0c05143 1eb5eb0 0c05143 1eb5eb0 0c05143 1eb5eb0 f073604 1eb5eb0 f073604 0c05143 f125575 1eb5eb0 0c05143 1eb5eb0 f125575 1eb5eb0 f125575 1eb5eb0 7f3430b f125575 7f3430b f125575 7f3430b 1eb5eb0 f125575 0c05143 7f3430b 2531994 b2ea6f0 85c787a 2985c37 ccfee78 d790f10 2985c37 28c5ccf 7f2efad 2531994 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b 2531994 7f3430b 2531994 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 7f3430b ed253d8 f8afb87 ed253d8 f8afb87 ed253d8 7f3430b ed253d8 7f3430b 2531994 7f3430b 82ebc62 d919cf5 7f3430b a2add61 d919cf5 0c05143 d919cf5 7f3430b 25328c1 9521104 02ceb47 d650995 02ceb47 7f3430b 83fd44d 9521104 fc3b2a9 83fd44d 3d17868 83fd44d 7ee5252 83fd44d 5370d53 8fa1e7e 7f3430b 0c05143 7f3430b 2531994 7f3430b 0f9e27e 7f3430b 5bd2e9d 66fee5f 7f3430b 2531994 66fee5f 7f3430b dfc72be 7f3430b f993109 7f3430b 7f2efad 7f3430b 2531994 7f3430b 0041517 d28630a ddc658a ad46481 dfc72be 7f3430b dfc72be 7f3430b f8afb87 7f3430b dfc72be ad46481 dfc72be 7f3430b f8afb87 7f3430b dfc72be f8afb87 7f3430b 55ee5d3 512594e dfc72be 2531994 7f3430b 2531994 9521104 83fd44d 2531994 c5fb5c4 2531994 d650995 2531994 8fa1e7e da4dbd8 28c5ccf 2985c37 28c5ccf 7f3430b f8afb87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 |
from gradio_client import Client
import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from huggingface_hub import login
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from scipy.io.wavfile import write as write_wav
from pydub import AudioSegment
from string import punctuation
import librosa
from pathlib import Path
import torchaudio
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Neo4j imports
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_community.document_loaders import HuggingFaceDatasetLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
from serpapi.google_search import GoogleSearch
#Parler TTS v1 Modules
import os
import re
import tempfile
import soundfile as sf
from string import punctuation
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor
#API AutoDate Fix Up
def get_current_date1():
return datetime.now().strftime("%Y-%m-%d")
# Usage
current_date1 = get_current_date1()
# Set environment variables for CUDA
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
print("Please set your Hugging Face token in the environment variables.")
else:
login(token=hf_token)
logging.basicConfig(level=logging.DEBUG)
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
#Initialization
# Initialize the models
def initialize_phi_model():
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3.5-mini-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
return pipeline("text-generation", model=model, tokenizer=tokenizer)
def initialize_gpt_model():
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
def initialize_gpt4o_mini_model():
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
# Initialize all models
phi_pipe = initialize_phi_model()
gpt_model = initialize_gpt_model()
gpt4o_mini_model = initialize_gpt4o_mini_model()
# Existing embeddings and vector store for GPT-4o
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
gpt_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=gpt_embeddings)
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})
from langchain_community.embeddings import FakeEmbeddings
# New vector store setup for Phi-3.5
# phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
phi_embeddings = FakeEmbeddings(size=1024)
phi_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=phi_embeddings)
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "italyv109102024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
chat_model1 = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Prompt templates
def get_current_date():
return datetime.now().strftime("%B %d, %Y")
current_date = get_current_date()
template1 = f"""You are an expert Italian speaker witg unrelah extensive knowledge of the language and culture. Your responses should be brief, to the point, and limited to one or two lines without providing excessive details. Please refrain from discussinted topics. Your signature phrase is, "It’s always a pleasure to assist you!"
Context: {{context}}
Question: {{question}}
Helpful Answer: """
# template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing the locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""
template2 =f"""You are an expert Italian speaker witg unrelah extensive knowledge of the language and culture. Your responses should be brief, to the point, and limited to one or two lines without providing excessive details. Please refrain from discussinted topics. Your signature phrase is, "It’s always a pleasure to assist you!"
Context: {{context}}
Question: {{question}}
Helpful Answer: """
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Neo4j setup
graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Avoid pushing the graph documents to Neo4j every time
# Only push the documents once and comment the code below after the initial push
# dataset_name = "Pijush2023/birmindata07312024"
# page_content_column = 'events_description'
# loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# data = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# documents = text_splitter.split_documents(data)
# llm_transformer = LLMGraphTransformer(llm=chat_model)
# graph_documents = llm_transformer.convert_to_graph_documents(documents)
# graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
# class Entities(BaseModel):
# names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
# entity_prompt = ChatPromptTemplate.from_messages([
# ("system", "You are extracting organization and person entities from the text."),
# ("human", "Use the given format to extract information from the following input: {question}"),
# ])
# entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
# def remove_lucene_chars(input: str) -> str:
# return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
# "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
# "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
# ";": r"\;", " ": r"\ "}))
# def generate_full_text_query(input: str) -> str:
# full_text_query = ""
# words = [el for el in remove_lucene_chars(input).split() if el]
# for word in words[:-1]:
# full_text_query += f" {word}~2 AND"
# full_text_query += f" {words[-1]}~2"
# return full_text_query.strip()
# def structured_retriever(question: str) -> str:
# result = ""
# entities = entity_chain.invoke({"question": question})
# for entity in entities.names:
# response = graph.query(
# """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
# YIELD node,score
# CALL {
# WITH node
# MATCH (node)-[r:!MENTIONS]->(neighbor)
# RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
# UNION ALL
# WITH node
# MATCH (node)<-[r:!MENTIONS]-(neighbor)
# RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
# }
# RETURN output LIMIT 50
# """,
# {"query": generate_full_text_query(entity)},
# )
# result += "\n".join([el['output'] for el in response])
# return result
# def retriever_neo4j(question: str):
# structured_data = structured_retriever(question)
# logging.debug(f"Structured data: {structured_data}")
# return structured_data
# _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
# in its original language.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
# def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
# buffer = []
# for human, ai in chat_history:
# buffer.append(HumanMessage(content=human))
# buffer.append(AIMessage(content=ai))
# return buffer
# _search_query = RunnableBranch(
# (
# RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
# run_name="HasChatHistoryCheck"
# ),
# RunnablePassthrough.assign(
# chat_history=lambda x: _format_chat_history(x["chat_history"])
# )
# | CONDENSE_QUESTION_PROMPT
# | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
# | StrOutputParser(),
# ),
# RunnableLambda(lambda x : x["question"]),
# )
# # template = """Answer the question based only on the following context:
# # {context}
# # Question: {question}
# # Use natural language and be concise.
# # Answer:"""
# template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""
# qa_prompt = ChatPromptTemplate.from_template(template)
# chain_neo4j = (
# RunnableParallel(
# {
# "context": _search_query | retriever_neo4j,
# "question": RunnablePassthrough(),
# }
# )
# | qa_prompt
# | chat_model
# | StrOutputParser()
# )
phi_custom_template = """
<|system|>
You are an expert Italian speaker with extensive knowledge of the language and culture.
Your responses should be brief, to the point, and limited to one or two lines without providing excessive details.
Please refrain from discussing unrelated topics. Your signature phrase is, "It’s always a pleasure to assist you!"<|end|>
<|user|>
{context}
Question: {question}<|end|>
<|assistant|>
Sure! Here's the information you requested:
"""
def generate_bot_response(history, choice, retrieval_mode, model_choice):
if not history:
return
# Select the model
# selected_model = chat_model if model_choice == "LM-1" else phi_pipe
selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe)
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
history[-1][1] = ""
for character in response:
history[-1][1] += character
yield history # Stream each character as it is generated
time.sleep(0.05) # Add a slight delay to simulate streaming
yield history # Final yield with the complete response
def generate_tts_response(response, tts_choice):
with concurrent.futures.ThreadPoolExecutor() as executor:
if tts_choice == "Alpha":
audio_future = executor.submit(generate_audio_elevenlabs, response)
elif tts_choice == "Beta":
audio_future = executor.submit(generate_audio_parler_tts, response)
# elif tts_choice == "Gamma":
# audio_future = executor.submit(generate_audio_mars5, response)
audio_path = audio_future.result()
return audio_path
import concurrent.futures
# Existing bot function with concurrent futures for parallel processing
def bot(history, choice, tts_choice, retrieval_mode, model_choice):
# Initialize an empty response
response = ""
# Create a thread pool to handle both text generation and TTS conversion in parallel
with concurrent.futures.ThreadPoolExecutor() as executor:
# Start the bot response generation in parallel
bot_future = executor.submit(generate_bot_response, history, choice, retrieval_mode, model_choice)
# Wait for the text generation to start
for history_chunk in bot_future.result():
response = history_chunk[-1][1] # Update the response with the current state
yield history_chunk, None # Stream the text output as it's generated
# Once text is fully generated, start the TTS conversion
tts_future = executor.submit(generate_tts_response, response, tts_choice)
# Get the audio output after TTS is done
audio_path = tts_future.result()
# Stream the final text and audio output
yield history, audio_path
# Modified bot function to separate chatbot response and TTS generation
def generate_bot_response(history, choice, retrieval_mode, model_choice):
if not history:
return
# Select the model
# selected_model = chat_model if model_choice == "LM-1" else phi_pipe
selected_model = chat_model if model_choice == "LM-1" else (chat_model1 if model_choice == "LM-3" else phi_pipe)
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
history[-1][1] = ""
for character in response:
history[-1][1] += character
yield history # Stream each character as it is generated
time.sleep(0.05) # Add a slight delay to simulate streaming
yield history # Final yield with the complete response
def generate_audio_after_text(response, tts_choice):
# Generate TTS audio after text response is completed
with concurrent.futures.ThreadPoolExecutor() as executor:
tts_future = executor.submit(generate_tts_response, response, tts_choice)
audio_path = tts_future.result()
return audio_path
import re
def clean_response(response_text):
# Remove system and user tags
response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL)
# Clean up the text by removing extra whitespace
cleaned_response = response_text.strip()
cleaned_response = re.sub(r'\s+', ' ', cleaned_response)
# Ensure the response is conversational and organized
cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.')
return cleaned_response
# Define a new template specifically for GPT-4o-mini in VDB Details mode
gpt4o_mini_template_details = f"""You’re an expert in Italian culture and language with a deep understanding of various topics related to Italy, including history, cuisine, art, and traditions. Your role is to provide clear and concise responses in Italian while remaining focused strictly on the question at hand.
Your task is to answer questions posed to you. Here are the details about the inquiries I would like you to address:
- Topic:
- Specific Question:
- Context (if any):
Please ensure that your answers remain relevant to the topic and avoid discussing unrelated subjects.
{{context}}
Question: {{question}}
Helpful Answer:"""
import traceback
def generate_answer(message, choice, retrieval_mode, selected_model):
logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
# Logic for disabling options for Phi-3.5
if selected_model == "LM-2":
choice = None
retrieval_mode = None
# try:
# # Select the appropriate template based on the choice
# if choice == "Details":
# prompt_template = QA_CHAIN_PROMPT_1
# elif choice == "Conversational":
# prompt_template = QA_CHAIN_PROMPT_2
# else:
# prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
try:
# Select the appropriate template based on the choice and model
if choice == "Details" and selected_model == chat_model1: # GPT-4o-mini
prompt_template = PromptTemplate(input_variables=["context", "question"], template=gpt4o_mini_template_details)
elif choice == "Details":
prompt_template = QA_CHAIN_PROMPT_1
elif choice == "Conversational":
prompt_template = QA_CHAIN_PROMPT_2
else:
prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
# # Handle hotel-related queries
# if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
# logging.debug("Handling hotel-related query")
# response = fetch_google_hotels()
# logging.debug(f"Hotel response: {response}")
# return response, extract_addresses(response)
# # Handle restaurant-related queries
# if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
# logging.debug("Handling restaurant-related query")
# response = fetch_yelp_restaurants()
# logging.debug(f"Restaurant response: {response}")
# return response, extract_addresses(response)
# # Handle flight-related queries
# if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
# logging.debug("Handling flight-related query")
# response = fetch_google_flights()
# logging.debug(f"Flight response: {response}")
# return response, extract_addresses(response)
# Retrieval-based response
if retrieval_mode == "VDB":
logging.debug("Using VDB retrieval mode")
if selected_model == chat_model:
logging.debug("Selected model: LM-1")
retriever = gpt_retriever
context = retriever.get_relevant_documents(message)
logging.debug(f"Retrieved context: {context}")
prompt = prompt_template.format(context=context, question=message)
logging.debug(f"Generated prompt: {prompt}")
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain({"query": message})
logging.debug(f"LM-1 response: {response}")
return response['result'], extract_addresses(response['result'])
elif selected_model == chat_model1:
logging.debug("Selected model: LM-3")
retriever = gpt_retriever
context = retriever.get_relevant_documents(message)
logging.debug(f"Retrieved context: {context}")
prompt = prompt_template.format(context=context, question=message)
logging.debug(f"Generated prompt: {prompt}")
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model1,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain({"query": message})
logging.debug(f"LM-3 response: {response}")
return response['result'], extract_addresses(response['result'])
elif selected_model == phi_pipe:
logging.debug("Selected model: LM-2")
retriever = phi_retriever
context_documents = retriever.get_relevant_documents(message)
context = "\n".join([doc.page_content for doc in context_documents])
logging.debug(f"Retrieved context for LM-2: {context}")
# Use the correct template variable
prompt = phi_custom_template.format(context=context, question=message)
logging.debug(f"Generated LM-2 prompt: {prompt}")
response = selected_model(prompt, **{
"max_new_tokens": 400,
"return_full_text": True,
"temperature": 0.7,
"do_sample": True,
})
if response:
generated_text = response[0]['generated_text']
logging.debug(f"LM-2 Response: {generated_text}")
cleaned_response = clean_response(generated_text)
return cleaned_response, extract_addresses(cleaned_response)
else:
logging.error("LM-2 did not return any response.")
return "No response generated.", []
elif retrieval_mode == "KGF":
logging.debug("Using KGF retrieval mode")
response = chain_neo4j.invoke({"question": message})
logging.debug(f"KGF response: {response}")
return response, extract_addresses(response)
else:
logging.error("Invalid retrieval mode selected.")
return "Invalid retrieval mode selected.", []
except Exception as e:
logging.error(f"Error in generate_answer: {str(e)}")
logging.error(traceback.format_exc())
return "Sorry, I encountered an error while processing your request.", []
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
# def extract_addresses(response):
# if not isinstance(response, str):
# response = str(response)
# address_patterns = [
# r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
# r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
# r'([A-Z].*,\sAL\s\d{5})',
# r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
# r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
# r'(\d{2}.*\sStreets)',
# r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
# r'([a-zA-Z]\s Birmingham)',
# r'([a-zA-Z].*,\sBirmingham,\sAL)',
# r'(.*),(Birmingham, AL,USA)$'
# r'(^Birmingham,AL$)',
# r'((.*)(Stadium|Field),.*,\sAL$)',
# r'((.*)(Stadium|Field),.*,\sFL$)',
# r'((.*)(Stadium|Field),.*,\sMS$)',
# r'((.*)(Stadium|Field),.*,\sAR$)',
# r'((.*)(Stadium|Field),.*,\sKY$)',
# r'((.*)(Stadium|Field),.*,\sTN$)',
# r'((.*)(Stadium|Field),.*,\sLA$)',
# r'((.*)(Stadium|Field),.*,\sFL$)'
# ]
# addresses = []
# for pattern in address_patterns:
# addresses.extend(re.findall(pattern, response))
# return addresses
# all_addresses = []
# def generate_map(location_names):
# global all_addresses
# all_addresses.extend(location_names)
# api_key = os.environ['GOOGLEMAPS_API_KEY']
# gmaps = GoogleMapsClient(key=api_key)
# m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
# for location_name in all_addresses:
# geocode_result = gmaps.geocode(location_name)
# if geocode_result:
# location = geocode_result[0]['geometry']['location']
# folium.Marker(
# [location['lat'], location['lng']],
# tooltip=f"{geocode_result[0]['formatted_address']}"
# ).add_to(m)
# map_html = m._repr_html_()
# return map_html
# from diffusers import DiffusionPipeline
# import torch
# def fetch_local_news():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# results = response.json().get("news_results", [])
# news_html = """
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
# <style>
# .news-item {
# font-family: 'Verdana', sans-serif;
# color: #333;
# background-color: #f0f8ff;
# margin-bottom: 15px;
# padding: 10px;
# border-radius: 5px;
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# font-weight: bold;
# }
# .news-item:hover {
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# background-color: #e6f7ff;
# }
# .news-item a {
# color: #1E90FF;
# text-decoration: none;
# font-weight: bold;
# }
# .news-item a:hover {
# text-decoration: underline;
# }
# .news-preview {
# position: absolute;
# display: none;
# border: 1px solid #ccc;
# border-radius: 5px;
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# background-color: white;
# z-index: 1000;
# max-width: 300px;
# padding: 10px;
# font-family: 'Verdana', sans-serif;
# color: #333;
# }
# </style>
# <script>
# function showPreview(event, previewContent) {
# var previewBox = document.getElementById('news-preview');
# previewBox.innerHTML = previewContent;
# previewBox.style.left = event.pageX + 'px';
# previewBox.style.top = event.pageY + 'px';
# previewBox.style.display = 'block';
# }
# function hidePreview() {
# var previewBox = document.getElementById('news-preview');
# previewBox.style.display = 'none';
# }
# </script>
# <div id="news-preview" class="news-preview"></div>
# """
# for index, result in enumerate(results[:7]):
# title = result.get("title", "No title")
# link = result.get("link", "#")
# snippet = result.get("snippet", "")
# news_html += f"""
# <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
# <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# <p>{snippet}</p>
# </div>
# """
# return news_html
# else:
# return "<p>Failed to fetch local news</p>"
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
base_audio_drive = "/data/audio"
#Normal Code with sample rate is 44100 Hz
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
y = y.astype(np.float32) / np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text","")
return stream, full_text, result
# def update_map_with_response(history):
# if not history:
# return ""
# response = history[-1][1]
# addresses = extract_addresses(response)
# return generate_map(addresses)
def clear_textbox():
return ""
# def show_map_if_details(history, choice):
# if choice in ["Details", "Conversational"]:
# return gr.update(visible=True), update_map_with_response(history)
# else:
# return gr.update(visible(False), "")
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
audio_segments = []
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_segments.append(chunk)
temp_audio_path = f.name
# Combine all audio chunks into a single file
combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
combined_audio.export(combined_audio_path, format="mp3")
logging.debug(f"Audio saved to {combined_audio_path}")
return combined_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
# chunking audio and then Process
import concurrent.futures
import tempfile
import os
import numpy as np
import logging
from queue import Queue
from threading import Thread
from scipy.io.wavfile import write as write_wav
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
from transformers import AutoTokenizer
# Ensure your device is set to CUDA
device = "cuda:0" if torch.cuda.is_available() else "cpu"
repo_id = "parler-tts/parler-tts-mini-v1"
def generate_audio_parler_tts(text):
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
chunk_size_in_s = 0.5
# Initialize the tokenizer and model
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
sampling_rate = parler_model.audio_encoder.config.sampling_rate
frame_rate = parler_model.audio_encoder.config.frame_rate
def generate(text, description, play_steps_in_s=0.5):
play_steps = int(frame_rate * play_steps_in_s)
streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps)
inputs = parler_tokenizer(description, return_tensors="pt").to(device)
prompt = parler_tokenizer(text, return_tensors="pt").to(device)
generation_kwargs = dict(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
attention_mask=inputs.attention_mask,
prompt_attention_mask=prompt.attention_mask,
streamer=streamer,
do_sample=True,
temperature=1.0,
min_new_tokens=10,
)
thread = Thread(target=parler_model.generate, kwargs=generation_kwargs)
thread.start()
for new_audio in streamer:
if new_audio.shape[0] == 0:
break
# Save or process each audio chunk as it is generated
yield sampling_rate, new_audio
audio_segments = []
for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
audio_segments.append(audio_chunk)
temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav")
write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32))
logging.debug(f"Saved chunk to {temp_audio_path}")
# Combine all the audio chunks into one audio file
combined_audio = np.concatenate(audio_segments)
combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav")
write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32))
logging.debug(f"Combined audio saved to {combined_audio_path}")
return combined_audio_path
# def fetch_local_events():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# events_results = response.json().get("events_results", [])
# events_html = """
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
# <style>
# table {
# font-family: 'Verdana', sans-serif;
# color: #333;
# border-collapse: collapse;
# width: 100%;
# }
# th, td {
# border: 1px solid #fff !important;
# padding: 8px;
# }
# th {
# background-color: #f2f2f2;
# color: #333;
# text-align: left;
# }
# tr:hover {
# background-color: #f5f5f5;
# }
# .event-link {
# color: #1E90FF;
# text-decoration: none;
# }
# .event-link:hover {
# text-decoration: underline;
# }
# </style>
# <table>
# <tr>
# <th>Title</th>
# <th>Date and Time</th>
# <th>Location</th>
# </tr>
# """
# for event in events_results:
# title = event.get("title", "No title")
# date_info = event.get("date", {})
# date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
# location = event.get("address", "No location")
# if isinstance(location, list):
# location = " ".join(location)
# location = location.replace("[", "").replace("]", "")
# link = event.get("link", "#")
# events_html += f"""
# <tr>
# <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
# <td>{date}</td>
# <td>{location}</td>
# </tr>
# """
# events_html += "</table>"
# return events_html
# else:
# return "<p>Failed to fetch local events</p>"
# def get_weather_icon(condition):
# condition_map = {
# "Clear": "c01d",
# "Partly Cloudy": "c02d",
# "Cloudy": "c03d",
# "Overcast": "c04d",
# "Mist": "a01d",
# "Patchy rain possible": "r01d",
# "Light rain": "r02d",
# "Moderate rain": "r03d",
# "Heavy rain": "r04d",
# "Snow": "s01d",
# "Thunderstorm": "t01d",
# "Fog": "a05d",
# }
# return condition_map.get(condition, "c04d")
# def fetch_local_weather():
# try:
# api_key = os.environ['WEATHER_API']
# url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
# response = requests.get(url)
# response.raise_for_status()
# jsonData = response.json()
# current_conditions = jsonData.get("currentConditions", {})
# temp_celsius = current_conditions.get("temp", "N/A")
# if temp_celsius != "N/A":
# temp_fahrenheit = int((temp_celsius * 9/5) + 32)
# else:
# temp_fahrenheit = "N/A"
# condition = current_conditions.get("conditions", "N/A")
# humidity = current_conditions.get("humidity", "N/A")
# weather_html = f"""
# <div class="weather-theme">
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
# <div class="weather-content">
# <div class="weather-icon">
# <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
# </div>
# <div class="weather-details">
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
# </div>
# </div>
# </div>
# <style>
# .weather-theme {{
# animation: backgroundAnimation 10s infinite alternate;
# border-radius: 10px;
# padding: 10px;
# margin-bottom: 15px;
# background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
# background-size: 400% 400%;
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# }}
# .weather-theme:hover {{
# box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
# background-position: 100% 100%;
# }}
# @keyframes backgroundAnimation {{
# 0% {{ background-position: 0% 50%; }}
# 100% {{ background-position: 100% 50%; }}
# }}
# .weather-content {{
# display: flex;
# align-items: center;
# }}
# .weather-icon {{
# flex: 1;
# }}
# .weather-details {{
# flex 3;
# }}
# </style>
# """
# return weather_html
# except requests.exceptions.RequestException as e:
# return f"<p>Failed to fetch local weather: {e}</p>"
def handle_retrieval_mode_change(choice):
if choice == "KGF":
return gr.update(interactive=False), gr.update(interactive=False)
else:
return gr.update(interactive=True), gr.update(interactive=True)
def handle_model_choice_change(selected_model):
if selected_model == "LM-2":
# Disable retrieval mode and select style when LM-2 is selected
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
elif selected_model == "LM-1":
# Enable retrieval mode and select style for LM-1
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
else:
# Default case: allow interaction
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
#Flux Coding
# Existing prompts for the Flux API
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
# Function to call the Flux API and generate images
def generate_image_flux(prompt):
# client = Client("black-forest-labs/FLUX.1-schnell",hf_token=hf_token)
client = Client("Pijush2023/radar_flux")
result = client.predict(
prompt=prompt,
seed=0,
randomize_seed=True,
width=400,
height=400,
num_inference_steps=2,
api_name="/infer"
)
# Assuming that the API response contains an image file or URL, extract the image part
if isinstance(result, tuple):
# Extract the image URL or path if it is a tuple
image_path_or_url = result[0] # Adjust this index based on the actual structure of the response
else:
image_path_or_url = result
return image_path_or_url # Return the image path or URL directly
# Function to update images with the three prompts
def update_images():
image_1 = generate_image_flux(hardcoded_prompt_1)
image_2 = generate_image_flux(hardcoded_prompt_2)
image_3 = generate_image_flux(hardcoded_prompt_3)
return image_1, image_2, image_3
def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
return f"""
{name}
- Link: {link}
- Location: {location}
- Contact No: {phone}
- Rating: {rating} stars ({reviews} reviews)
- Snippet: {snippet}
"""
def fetch_yelp_restaurants():
# Introductory prompt for restaurants
intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:"
params = {
"engine": "yelp",
"find_desc": "Restaurant",
"find_loc": "Birmingham, AL, USA",
"api_key": os.getenv("SERP_API")
}
search = GoogleSearch(params)
results = search.get_dict()
organic_results = results.get("organic_results", [])
response_text = f"{intro_prompt}\n"
for result in organic_results[:5]: # Limiting to top 5 restaurants
name = result.get("title", "No name")
rating = result.get("rating", "No rating")
reviews = result.get("reviews", "No reviews")
phone = result.get("phone", "Not Available")
snippet = result.get("snippet", "Not Available")
location = f"{name}, Birmingham, AL,USA"
link = result.get("link", "#")
response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet)
return response_text
def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities):
return f"""
{name}
- Link: {link}
- Location: {location}
- Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate})
- Check-in Time: {check_in_time}
- Check-out Time: {check_out_time}
- Amenities: {amenities}
- Description: {description}
"""
def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2):
# Introductory prompt for hotels
intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:"
params = {
"engine": "google_hotels",
"q": query,
"check_in_date": check_in,
"check_out_date": check_out,
"adults": str(adults),
"currency": "USD",
"gl": "us",
"hl": "en",
"api_key": os.getenv("SERP_API")
}
search = GoogleSearch(params)
results = search.get_dict()
hotel_results = results.get("properties", [])
hotel_info = f"{intro_prompt}\n"
for hotel in hotel_results[:5]: # Limiting to top 5 hotels
name = hotel.get('name', 'No name')
description = hotel.get('description', 'No description')
link = hotel.get('link', '#')
check_in_time = hotel.get('check_in_time', 'N/A')
check_out_time = hotel.get('check_out_time', 'N/A')
rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A')
before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A')
total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A')
amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available"
location = f"{name}, Birmingham, AL,USA"
hotel_info += format_hotel_info(
name,
link,
location,
rate_per_night,
total_rate,
description,
check_in_time,
check_out_time,
amenities
)
return hotel_info
def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane):
return f"""
Flight {flight_number}
- Departure: {departure_airport} at {departure_time}
- Arrival: {arrival_airport} at {arrival_time}
- Duration: {duration} minutes
- Airplane: {airplane}
"""
def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"):
# Introductory prompt for flights
intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:"
params = {
"engine": "google_flights",
"departure_id": departure_id,
"arrival_id": arrival_id,
"outbound_date": outbound_date,
"return_date": return_date,
"currency": "USD",
"hl": "en",
"api_key": os.getenv("SERP_API")
}
search = GoogleSearch(params)
results = search.get_dict()
# Extract flight details from the results
best_flights = results.get('best_flights', [])
flight_info = f"{intro_prompt}\n"
# Process each flight in the best_flights list
for i, flight in enumerate(best_flights, start=1):
for segment in flight.get('flights', []):
departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport')
departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time')
arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport')
arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time')
duration = segment.get('duration', 'Unknown Duration')
airplane = segment.get('airplane', 'Unknown Airplane')
# Format the flight segment details
flight_info += format_flight_info(
flight_number=i,
departure_airport=departure_airport,
departure_time=departure_time,
arrival_airport=arrival_airport,
arrival_time=arrival_time,
duration=duration,
airplane=airplane
)
return flight_info
# examples = [
# [
# "What are the concerts in Birmingham?",
# ],
# [
# "what are some of the upcoming matches of crimson tide?",
# ],
# [
# "where from i will get a Hamburger?",
# ],
# [
# "What are some of the hotels at birmingham?",
# ],
# [
# "how can i connect the alexa to the radio?"
# ],
# [
# "What are some of the good clubs at birmingham?"
# ],
# [
# "How do I call the radio station?",
# ],
# [
# "What’s the spread?"
# ],
# [
# "What time is Crimson Tide Rewind?"
# ],
# [
# "What time is Alabama kick-off?"
# ],
# [
# "who are some of the popular players of crimson tide?"
# ]
# ]
# # Function to insert the prompt into the textbox when clicked
# def insert_prompt(current_text, prompt):
# return prompt[0] if prompt else current_text
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
with gr.Row():
with gr.Column():
state = gr.State()
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB"], value="VDB")
model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2", "LM-3"], value="LM-1")
# Link the dropdown change to handle_model_choice_change
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
retriever_button = gr.Button("Retriever")
clear_button = gr.Button("Clear")
clear_button.click(lambda: [None, None], outputs=[chat_input, state])
# gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
# location_output = gr.HTML()
audio_output = gr.Audio(interactive=False, autoplay=True)
def stop_audio():
audio_output.stop()
return None
retriever_sequence = (
retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording")
.then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory")
# First, generate the bot response
.then(fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response")
# Then, generate the TTS response based on the bot's response
.then(fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response")
.then(fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox")
)
chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording").then(
fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory"
).then(
# First, generate the bot response
fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response"
).then(
# Then, generate the TTS response based on the bot's response
fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response"
).then(
fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox"
)
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="api_voice_to_text")
# gr.Markdown("<h1 style='color: red;'>Example Prompts</h1>", elem_id="Example-Prompts")
# gr.Examples(examples=examples, fn=insert_prompt,inputs=chat_input, outputs=chat_input)
# with gr.Column():
# weather_output = gr.HTML(value=fetch_local_weather())
# news_output = gr.HTML(value=fetch_local_news())
# events_output = gr.HTML(value=fetch_local_events())
# with gr.Column():
# # Call update_images during the initial load to display images when the interface appears
# initial_images = update_images()
# # Displaying the images generated using Flux API directly
# image_output_1 = gr.Image(value=initial_images[0], label="Image 1", elem_id="flux_image_1", width=400, height=400)
# image_output_2 = gr.Image(value=initial_images[1], label="Image 2", elem_id="flux_image_2", width=400, height=400)
# image_output_3 = gr.Image(value=initial_images[2], label="Image 3", elem_id="flux_image_3", width=400, height=400)
# # Refresh button to update images
# refresh_button = gr.Button("Refresh Images")
# refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
demo.queue()
demo.launch(show_error=True) |