Pijush2023 commited on
Commit
717964a
·
verified ·
1 Parent(s): 55ee5d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +157 -52
app.py CHANGED
@@ -99,6 +99,16 @@ def initialize_phi_model():
99
 
100
  def initialize_gpt_model():
101
  return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
 
 
 
 
 
 
 
 
 
 
102
 
103
  # Initialize both models
104
  phi_pipe = initialize_phi_model()
@@ -334,12 +344,36 @@ Sure! Here's the information you requested:
334
  """
335
 
336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337
  def generate_bot_response(history, choice, retrieval_mode, model_choice):
338
  if not history:
339
  return
340
 
341
- # Select the model
342
- selected_model = chat_model if model_choice == "LM-1" else phi_pipe
 
 
 
 
 
 
 
343
 
344
  response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
345
  history[-1][1] = ""
@@ -353,6 +387,7 @@ def generate_bot_response(history, choice, retrieval_mode, model_choice):
353
 
354
 
355
 
 
356
  def generate_tts_response(response, tts_choice):
357
  with concurrent.futures.ThreadPoolExecutor() as executor:
358
  if tts_choice == "Alpha":
@@ -451,11 +486,112 @@ def clean_response(response_text):
451
 
452
  import traceback
453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
  def generate_answer(message, choice, retrieval_mode, selected_model):
455
  logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
456
 
457
  # Logic for disabling options for Phi-3.5
458
- if selected_model == "LM-2":
459
  choice = None
460
  retrieval_mode = None
461
 
@@ -468,21 +604,19 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
468
  else:
469
  prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
470
 
471
- # Handle hotel-related queries
472
  if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
473
  logging.debug("Handling hotel-related query")
474
  response = fetch_google_hotels()
475
  logging.debug(f"Hotel response: {response}")
476
  return response, extract_addresses(response)
477
 
478
- # Handle restaurant-related queries
479
  if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
480
  logging.debug("Handling restaurant-related query")
481
  response = fetch_yelp_restaurants()
482
  logging.debug(f"Restaurant response: {response}")
483
  return response, extract_addresses(response)
484
 
485
- # Handle flight-related queries
486
  if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
487
  logging.debug("Handling flight-related query")
488
  response = fetch_google_flights()
@@ -492,51 +626,22 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
492
  # Retrieval-based response
493
  if retrieval_mode == "VDB":
494
  logging.debug("Using VDB retrieval mode")
495
- if selected_model == chat_model:
496
- logging.debug("Selected model: LM-1")
497
- retriever = gpt_retriever
498
- context = retriever.get_relevant_documents(message)
499
- logging.debug(f"Retrieved context: {context}")
500
-
501
- prompt = prompt_template.format(context=context, question=message)
502
- logging.debug(f"Generated prompt: {prompt}")
503
-
504
- qa_chain = RetrievalQA.from_chain_type(
505
- llm=chat_model,
506
- chain_type="stuff",
507
- retriever=retriever,
508
- chain_type_kwargs={"prompt": prompt_template}
509
- )
510
- response = qa_chain({"query": message})
511
- logging.debug(f"LM-1 response: {response}")
512
- return response['result'], extract_addresses(response['result'])
513
-
514
- elif selected_model == phi_pipe:
515
- logging.debug("Selected model: LM-2")
516
- retriever = phi_retriever
517
- context_documents = retriever.get_relevant_documents(message)
518
- context = "\n".join([doc.page_content for doc in context_documents])
519
- logging.debug(f"Retrieved context for LM-2: {context}")
520
-
521
- # Use the correct template variable
522
- prompt = phi_custom_template.format(context=context, question=message)
523
- logging.debug(f"Generated LM-2 prompt: {prompt}")
524
-
525
- response = selected_model(prompt, **{
526
- "max_new_tokens": 400,
527
- "return_full_text": True,
528
- "temperature": 0.7,
529
- "do_sample": True,
530
- })
531
-
532
- if response:
533
- generated_text = response[0]['generated_text']
534
- logging.debug(f"LM-2 Response: {generated_text}")
535
- cleaned_response = clean_response(generated_text)
536
- return cleaned_response, extract_addresses(cleaned_response)
537
- else:
538
- logging.error("LM-2 did not return any response.")
539
- return "No response generated.", []
540
 
541
  elif retrieval_mode == "KGF":
542
  logging.debug("Using KGF retrieval mode")
@@ -1258,7 +1363,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1258
  chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1259
  choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1260
  retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
1261
- model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2"], value="LM-1")
1262
 
1263
  # Link the dropdown change to handle_model_choice_change
1264
  model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
 
99
 
100
  def initialize_gpt_model():
101
  return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
102
+
103
+
104
+ def initialize_gpt_mini_model():
105
+ return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
106
+
107
+ # Initialize the GPT-4o-mini model
108
+ gpt_mini_model = initialize_gpt_mini_model()
109
+
110
+
111
+
112
 
113
  # Initialize both models
114
  phi_pipe = initialize_phi_model()
 
344
  """
345
 
346
 
347
+ # def generate_bot_response(history, choice, retrieval_mode, model_choice):
348
+ # if not history:
349
+ # return
350
+
351
+ # # Select the model
352
+ # selected_model = chat_model if model_choice == "LM-1" else phi_pipe
353
+
354
+ # response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
355
+ # history[-1][1] = ""
356
+
357
+ # for character in response:
358
+ # history[-1][1] += character
359
+ # yield history # Stream each character as it is generated
360
+ # time.sleep(0.05) # Add a slight delay to simulate streaming
361
+
362
+ # yield history # Final yield with the complete response
363
+
364
  def generate_bot_response(history, choice, retrieval_mode, model_choice):
365
  if not history:
366
  return
367
 
368
+ # Select the model based on the user's choice
369
+ if model_choice == "LM-1":
370
+ selected_model = chat_model
371
+ elif model_choice == "LM-2":
372
+ selected_model = phi_pipe
373
+ elif model_choice == "LM-3":
374
+ selected_model = gpt_mini_model
375
+ else:
376
+ selected_model = chat_model # Fallback to GPT-4o
377
 
378
  response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
379
  history[-1][1] = ""
 
387
 
388
 
389
 
390
+
391
  def generate_tts_response(response, tts_choice):
392
  with concurrent.futures.ThreadPoolExecutor() as executor:
393
  if tts_choice == "Alpha":
 
486
 
487
  import traceback
488
 
489
+ # def generate_answer(message, choice, retrieval_mode, selected_model):
490
+ # logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
491
+
492
+ # # Logic for disabling options for Phi-3.5
493
+ # if selected_model == "LM-2":
494
+ # choice = None
495
+ # retrieval_mode = None
496
+
497
+ # try:
498
+ # # Select the appropriate template based on the choice
499
+ # if choice == "Details":
500
+ # prompt_template = QA_CHAIN_PROMPT_1
501
+ # elif choice == "Conversational":
502
+ # prompt_template = QA_CHAIN_PROMPT_2
503
+ # else:
504
+ # prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
505
+
506
+ # # Handle hotel-related queries
507
+ # if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
508
+ # logging.debug("Handling hotel-related query")
509
+ # response = fetch_google_hotels()
510
+ # logging.debug(f"Hotel response: {response}")
511
+ # return response, extract_addresses(response)
512
+
513
+ # # Handle restaurant-related queries
514
+ # if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
515
+ # logging.debug("Handling restaurant-related query")
516
+ # response = fetch_yelp_restaurants()
517
+ # logging.debug(f"Restaurant response: {response}")
518
+ # return response, extract_addresses(response)
519
+
520
+ # # Handle flight-related queries
521
+ # if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
522
+ # logging.debug("Handling flight-related query")
523
+ # response = fetch_google_flights()
524
+ # logging.debug(f"Flight response: {response}")
525
+ # return response, extract_addresses(response)
526
+
527
+ # # Retrieval-based response
528
+ # if retrieval_mode == "VDB":
529
+ # logging.debug("Using VDB retrieval mode")
530
+ # if selected_model == chat_model:
531
+ # logging.debug("Selected model: LM-1")
532
+ # retriever = gpt_retriever
533
+ # context = retriever.get_relevant_documents(message)
534
+ # logging.debug(f"Retrieved context: {context}")
535
+
536
+ # prompt = prompt_template.format(context=context, question=message)
537
+ # logging.debug(f"Generated prompt: {prompt}")
538
+
539
+ # qa_chain = RetrievalQA.from_chain_type(
540
+ # llm=chat_model,
541
+ # chain_type="stuff",
542
+ # retriever=retriever,
543
+ # chain_type_kwargs={"prompt": prompt_template}
544
+ # )
545
+ # response = qa_chain({"query": message})
546
+ # logging.debug(f"LM-1 response: {response}")
547
+ # return response['result'], extract_addresses(response['result'])
548
+
549
+ # elif selected_model == phi_pipe:
550
+ # logging.debug("Selected model: LM-2")
551
+ # retriever = phi_retriever
552
+ # context_documents = retriever.get_relevant_documents(message)
553
+ # context = "\n".join([doc.page_content for doc in context_documents])
554
+ # logging.debug(f"Retrieved context for LM-2: {context}")
555
+
556
+ # # Use the correct template variable
557
+ # prompt = phi_custom_template.format(context=context, question=message)
558
+ # logging.debug(f"Generated LM-2 prompt: {prompt}")
559
+
560
+ # response = selected_model(prompt, **{
561
+ # "max_new_tokens": 400,
562
+ # "return_full_text": True,
563
+ # "temperature": 0.7,
564
+ # "do_sample": True,
565
+ # })
566
+
567
+ # if response:
568
+ # generated_text = response[0]['generated_text']
569
+ # logging.debug(f"LM-2 Response: {generated_text}")
570
+ # cleaned_response = clean_response(generated_text)
571
+ # return cleaned_response, extract_addresses(cleaned_response)
572
+ # else:
573
+ # logging.error("LM-2 did not return any response.")
574
+ # return "No response generated.", []
575
+
576
+ # elif retrieval_mode == "KGF":
577
+ # logging.debug("Using KGF retrieval mode")
578
+ # response = chain_neo4j.invoke({"question": message})
579
+ # logging.debug(f"KGF response: {response}")
580
+ # return response, extract_addresses(response)
581
+ # else:
582
+ # logging.error("Invalid retrieval mode selected.")
583
+ # return "Invalid retrieval mode selected.", []
584
+
585
+ # except Exception as e:
586
+ # logging.error(f"Error in generate_answer: {str(e)}")
587
+ # logging.error(traceback.format_exc())
588
+ # return "Sorry, I encountered an error while processing your request.", []
589
+
590
  def generate_answer(message, choice, retrieval_mode, selected_model):
591
  logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
592
 
593
  # Logic for disabling options for Phi-3.5
594
+ if selected_model == phi_pipe:
595
  choice = None
596
  retrieval_mode = None
597
 
 
604
  else:
605
  prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
606
 
607
+ # Handle hotel, restaurant, and flight-related queries as before
608
  if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
609
  logging.debug("Handling hotel-related query")
610
  response = fetch_google_hotels()
611
  logging.debug(f"Hotel response: {response}")
612
  return response, extract_addresses(response)
613
 
 
614
  if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
615
  logging.debug("Handling restaurant-related query")
616
  response = fetch_yelp_restaurants()
617
  logging.debug(f"Restaurant response: {response}")
618
  return response, extract_addresses(response)
619
 
 
620
  if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
621
  logging.debug("Handling flight-related query")
622
  response = fetch_google_flights()
 
626
  # Retrieval-based response
627
  if retrieval_mode == "VDB":
628
  logging.debug("Using VDB retrieval mode")
629
+ retriever = gpt_retriever # Use the same retriever for all GPT models
630
+ context = retriever.get_relevant_documents(message)
631
+ logging.debug(f"Retrieved context: {context}")
632
+
633
+ prompt = prompt_template.format(context=context, question=message)
634
+ logging.debug(f"Generated prompt: {prompt}")
635
+
636
+ qa_chain = RetrievalQA.from_chain_type(
637
+ llm=selected_model,
638
+ chain_type="stuff",
639
+ retriever=retriever,
640
+ chain_type_kwargs={"prompt": prompt_template}
641
+ )
642
+ response = qa_chain({"query": message})
643
+ logging.debug(f"Response from {selected_model}: {response}")
644
+ return response['result'], extract_addresses(response['result'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645
 
646
  elif retrieval_mode == "KGF":
647
  logging.debug("Using KGF retrieval mode")
 
1363
  chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1364
  choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1365
  retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
1366
+ model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2", "LM-3"], value="LM-1")
1367
 
1368
  # Link the dropdown change to handle_model_choice_change
1369
  model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])