Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -70,6 +70,7 @@ current_date1 = get_current_date1()
|
|
70 |
# Set environment variables for CUDA
|
71 |
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
|
72 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
|
73 |
|
74 |
|
75 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -711,6 +712,13 @@ def generate_map(location_names):
|
|
711 |
# image_3 = generate_image(hardcoded_prompt_3)
|
712 |
# return image_1, image_2, image_3
|
713 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
714 |
import gradio as gr
|
715 |
import torch
|
716 |
from diffusers import FluxPipeline
|
@@ -720,8 +728,14 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
720 |
|
721 |
# Function to initialize Flux bot model
|
722 |
def initialize_flux_bot():
|
723 |
-
|
724 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
return pipe
|
726 |
|
727 |
# Function to generate image using Flux bot on the specified device
|
@@ -730,8 +744,8 @@ def generate_image_flux(prompt):
|
|
730 |
image = pipe(
|
731 |
prompt,
|
732 |
guidance_scale=0.0,
|
733 |
-
num_inference_steps=
|
734 |
-
max_sequence_length=
|
735 |
generator=torch.Generator(device).manual_seed(0)
|
736 |
).images[0]
|
737 |
return image
|
|
|
70 |
# Set environment variables for CUDA
|
71 |
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
|
72 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
73 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
74 |
|
75 |
|
76 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
712 |
# image_3 = generate_image(hardcoded_prompt_3)
|
713 |
# return image_1, image_2, image_3
|
714 |
|
715 |
+
|
716 |
+
|
717 |
+
|
718 |
+
# Clear any cached memory
|
719 |
+
torch.cuda.empty_cache()
|
720 |
+
|
721 |
+
|
722 |
import gradio as gr
|
723 |
import torch
|
724 |
from diffusers import FluxPipeline
|
|
|
728 |
|
729 |
# Function to initialize Flux bot model
|
730 |
def initialize_flux_bot():
|
731 |
+
try:
|
732 |
+
torch.cuda.empty_cache() # Clear GPU memory cache
|
733 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) # Use FP16
|
734 |
+
pipe.to(device) # Move the model to the correct device (GPU/CPU)
|
735 |
+
except torch.cuda.OutOfMemoryError:
|
736 |
+
print("CUDA out of memory, switching to CPU.")
|
737 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float32) # Use FP32 for CPU
|
738 |
+
pipe.to("cpu")
|
739 |
return pipe
|
740 |
|
741 |
# Function to generate image using Flux bot on the specified device
|
|
|
744 |
image = pipe(
|
745 |
prompt,
|
746 |
guidance_scale=0.0,
|
747 |
+
num_inference_steps=2,
|
748 |
+
max_sequence_length=128,
|
749 |
generator=torch.Generator(device).manual_seed(0)
|
750 |
).images[0]
|
751 |
return image
|