Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -688,7 +688,7 @@ def generate_map(location_names):
|
|
688 |
map_html = m._repr_html_()
|
689 |
return map_html
|
690 |
|
691 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
692 |
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
693 |
# pipe.to(device)
|
694 |
|
@@ -711,15 +711,20 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
711 |
# image_3 = generate_image(hardcoded_prompt_3)
|
712 |
# return image_1, image_2, image_3
|
713 |
|
|
|
|
|
714 |
from diffusers import FluxPipeline
|
715 |
|
|
|
|
|
|
|
716 |
# Function to initialize Flux bot model
|
717 |
def initialize_flux_bot():
|
718 |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
719 |
-
pipe.
|
720 |
return pipe
|
721 |
|
722 |
-
# Function to generate image using Flux bot
|
723 |
def generate_image_flux(prompt):
|
724 |
pipe = initialize_flux_bot()
|
725 |
image = pipe(
|
@@ -727,7 +732,7 @@ def generate_image_flux(prompt):
|
|
727 |
guidance_scale=0.0,
|
728 |
num_inference_steps=4,
|
729 |
max_sequence_length=256,
|
730 |
-
generator=torch.Generator(
|
731 |
).images[0]
|
732 |
return image
|
733 |
|
|
|
688 |
map_html = m._repr_html_()
|
689 |
return map_html
|
690 |
|
691 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
692 |
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
693 |
# pipe.to(device)
|
694 |
|
|
|
711 |
# image_3 = generate_image(hardcoded_prompt_3)
|
712 |
# return image_1, image_2, image_3
|
713 |
|
714 |
+
import gradio as gr
|
715 |
+
import torch
|
716 |
from diffusers import FluxPipeline
|
717 |
|
718 |
+
# Check if CUDA (GPU) is available, otherwise fallback to CPU
|
719 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
720 |
+
|
721 |
# Function to initialize Flux bot model
|
722 |
def initialize_flux_bot():
|
723 |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
724 |
+
pipe.to(device) # Move the model to the correct device (GPU/CPU)
|
725 |
return pipe
|
726 |
|
727 |
+
# Function to generate image using Flux bot on the specified device
|
728 |
def generate_image_flux(prompt):
|
729 |
pipe = initialize_flux_bot()
|
730 |
image = pipe(
|
|
|
732 |
guidance_scale=0.0,
|
733 |
num_inference_steps=4,
|
734 |
max_sequence_length=256,
|
735 |
+
generator=torch.Generator(device).manual_seed(0)
|
736 |
).images[0]
|
737 |
return image
|
738 |
|