Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -688,7 +688,7 @@ def generate_map(location_names):
|
|
688 |
map_html = m._repr_html_()
|
689 |
return map_html
|
690 |
|
691 |
-
|
692 |
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
693 |
# pipe.to(device)
|
694 |
|
@@ -711,16 +711,7 @@ def generate_map(location_names):
|
|
711 |
# image_3 = generate_image(hardcoded_prompt_3)
|
712 |
# return image_1, image_2, image_3
|
713 |
|
714 |
-
|
715 |
-
|
716 |
-
from diffusers import StableDiffusionPipeline, FluxPipeline
|
717 |
-
|
718 |
-
# Function to initialize Stable Diffusion model
|
719 |
-
def initialize_stable_diffusion():
|
720 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
721 |
-
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
722 |
-
pipe.to(device)
|
723 |
-
return pipe
|
724 |
|
725 |
# Function to initialize Flux bot model
|
726 |
def initialize_flux_bot():
|
@@ -728,17 +719,6 @@ def initialize_flux_bot():
|
|
728 |
pipe.enable_model_cpu_offload() # Saves VRAM by offloading the model to CPU
|
729 |
return pipe
|
730 |
|
731 |
-
# Function to generate image using Stable Diffusion
|
732 |
-
def generate_image_stable_diffusion(prompt):
|
733 |
-
pipe = initialize_stable_diffusion()
|
734 |
-
with torch.cuda.amp.autocast():
|
735 |
-
image = pipe(
|
736 |
-
prompt,
|
737 |
-
num_inference_steps=28,
|
738 |
-
guidance_scale=3.0,
|
739 |
-
).images[0]
|
740 |
-
return image
|
741 |
-
|
742 |
# Function to generate image using Flux bot
|
743 |
def generate_image_flux(prompt):
|
744 |
pipe = initialize_flux_bot()
|
@@ -751,26 +731,22 @@ def generate_image_flux(prompt):
|
|
751 |
).images[0]
|
752 |
return image
|
753 |
|
754 |
-
# Combined function to handle model switching based on radio button selection
|
755 |
-
def generate_image(prompt, model_choice):
|
756 |
-
if model_choice == "IG-1":
|
757 |
-
return generate_image_flux(prompt)
|
758 |
-
else: # Default to Stable Diffusion
|
759 |
-
return generate_image_stable_diffusion(prompt)
|
760 |
-
|
761 |
# Hardcoded prompts for the images
|
762 |
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
763 |
hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
|
764 |
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
765 |
|
766 |
-
# Function to update images
|
767 |
-
def update_images(
|
768 |
-
image_1 =
|
769 |
-
image_2 =
|
770 |
-
image_3 =
|
771 |
return image_1, image_2, image_3
|
772 |
|
773 |
|
|
|
|
|
|
|
774 |
def fetch_local_news():
|
775 |
api_key = os.environ['SERP_API']
|
776 |
url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
|
@@ -1428,8 +1404,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1428 |
|
1429 |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
|
1430 |
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
|
1431 |
-
|
1432 |
-
model_choice = gr.Radio(label="Select Image Generation Model", choices=["IG-1", "IG-2"], value="IG-1")
|
1433 |
retriever_button = gr.Button("Retriever")
|
1434 |
|
1435 |
clear_button = gr.Button("Clear")
|
@@ -1515,12 +1490,13 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1515 |
# image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
|
1516 |
|
1517 |
# Display images
|
1518 |
-
image_output_1 = gr.Image(value=
|
1519 |
-
image_output_2 = gr.Image(value=
|
1520 |
-
image_output_3 = gr.Image(value=
|
1521 |
|
|
|
1522 |
refresh_button = gr.Button("Refresh Images")
|
1523 |
-
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3]
|
1524 |
|
1525 |
demo.queue()
|
1526 |
demo.launch(show_error=True)
|
|
|
688 |
map_html = m._repr_html_()
|
689 |
return map_html
|
690 |
|
691 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
692 |
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
693 |
# pipe.to(device)
|
694 |
|
|
|
711 |
# image_3 = generate_image(hardcoded_prompt_3)
|
712 |
# return image_1, image_2, image_3
|
713 |
|
714 |
+
from diffusers import FluxPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
|
716 |
# Function to initialize Flux bot model
|
717 |
def initialize_flux_bot():
|
|
|
719 |
pipe.enable_model_cpu_offload() # Saves VRAM by offloading the model to CPU
|
720 |
return pipe
|
721 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
# Function to generate image using Flux bot
|
723 |
def generate_image_flux(prompt):
|
724 |
pipe = initialize_flux_bot()
|
|
|
731 |
).images[0]
|
732 |
return image
|
733 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
734 |
# Hardcoded prompts for the images
|
735 |
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
736 |
hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
|
737 |
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
738 |
|
739 |
+
# Function to update images
|
740 |
+
def update_images():
|
741 |
+
image_1 = generate_image_flux(hardcoded_prompt_1)
|
742 |
+
image_2 = generate_image_flux(hardcoded_prompt_2)
|
743 |
+
image_3 = generate_image_flux(hardcoded_prompt_3)
|
744 |
return image_1, image_2, image_3
|
745 |
|
746 |
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
def fetch_local_news():
|
751 |
api_key = os.environ['SERP_API']
|
752 |
url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
|
|
|
1404 |
|
1405 |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
|
1406 |
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
|
1407 |
+
|
|
|
1408 |
retriever_button = gr.Button("Retriever")
|
1409 |
|
1410 |
clear_button = gr.Button("Clear")
|
|
|
1490 |
# image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
|
1491 |
|
1492 |
# Display images
|
1493 |
+
image_output_1 = gr.Image(value=generate_image_flux(hardcoded_prompt_1), width=400, height=400)
|
1494 |
+
image_output_2 = gr.Image(value=generate_image_flux(hardcoded_prompt_2), width=400, height=400)
|
1495 |
+
image_output_3 = gr.Image(value=generate_image_flux(hardcoded_prompt_3), width=400, height=400)
|
1496 |
|
1497 |
+
# Refresh button to update images
|
1498 |
refresh_button = gr.Button("Refresh Images")
|
1499 |
+
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
|
1500 |
|
1501 |
demo.queue()
|
1502 |
demo.launch(show_error=True)
|