Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -688,11 +688,49 @@ def generate_map(location_names):
|
|
688 |
map_html = m._repr_html_()
|
689 |
return map_html
|
690 |
|
691 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
692 |
-
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
693 |
-
pipe.to(device)
|
694 |
-
|
695 |
-
def generate_image(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
with torch.cuda.amp.autocast():
|
697 |
image = pipe(
|
698 |
prompt,
|
@@ -701,14 +739,35 @@ def generate_image(prompt):
|
|
701 |
).images[0]
|
702 |
return image
|
703 |
|
704 |
-
|
705 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
707 |
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
|
|
712 |
return image_1, image_2, image_3
|
713 |
|
714 |
|
@@ -1369,6 +1428,8 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1369 |
|
1370 |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
|
1371 |
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
|
|
|
|
|
1372 |
retriever_button = gr.Button("Retriever")
|
1373 |
|
1374 |
clear_button = gr.Button("Clear")
|
@@ -1449,9 +1510,14 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1449 |
events_output = gr.HTML(value=fetch_local_events())
|
1450 |
|
1451 |
with gr.Column():
|
1452 |
-
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
|
1453 |
-
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
|
1454 |
-
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
|
|
|
|
|
|
|
|
|
|
|
1455 |
|
1456 |
refresh_button = gr.Button("Refresh Images")
|
1457 |
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
|
|
|
688 |
map_html = m._repr_html_()
|
689 |
return map_html
|
690 |
|
691 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
692 |
+
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
693 |
+
# pipe.to(device)
|
694 |
+
|
695 |
+
# def generate_image(prompt):
|
696 |
+
# with torch.cuda.amp.autocast():
|
697 |
+
# image = pipe(
|
698 |
+
# prompt,
|
699 |
+
# num_inference_steps=28,
|
700 |
+
# guidance_scale=3.0,
|
701 |
+
# ).images[0]
|
702 |
+
# return image
|
703 |
+
|
704 |
+
# hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in th style of Michael Mann"
|
705 |
+
# hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in th style of Michael Mann"
|
706 |
+
# hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
707 |
+
|
708 |
+
# def update_images():
|
709 |
+
# image_1 = generate_image(hardcoded_prompt_1)
|
710 |
+
# image_2 = generate_image(hardcoded_prompt_2)
|
711 |
+
# image_3 = generate_image(hardcoded_prompt_3)
|
712 |
+
# return image_1, image_2, image_3
|
713 |
+
|
714 |
+
|
715 |
+
|
716 |
+
from diffusers import StableDiffusionPipeline, FluxPipeline
|
717 |
+
|
718 |
+
# Function to initialize Stable Diffusion model
|
719 |
+
def initialize_stable_diffusion():
|
720 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
721 |
+
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
|
722 |
+
pipe.to(device)
|
723 |
+
return pipe
|
724 |
+
|
725 |
+
# Function to initialize Flux bot model
|
726 |
+
def initialize_flux_bot():
|
727 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
728 |
+
pipe.enable_model_cpu_offload() # Saves VRAM by offloading the model to CPU
|
729 |
+
return pipe
|
730 |
+
|
731 |
+
# Function to generate image using Stable Diffusion
|
732 |
+
def generate_image_stable_diffusion(prompt):
|
733 |
+
pipe = initialize_stable_diffusion()
|
734 |
with torch.cuda.amp.autocast():
|
735 |
image = pipe(
|
736 |
prompt,
|
|
|
739 |
).images[0]
|
740 |
return image
|
741 |
|
742 |
+
# Function to generate image using Flux bot
|
743 |
+
def generate_image_flux(prompt):
|
744 |
+
pipe = initialize_flux_bot()
|
745 |
+
image = pipe(
|
746 |
+
prompt,
|
747 |
+
guidance_scale=0.0,
|
748 |
+
num_inference_steps=4,
|
749 |
+
max_sequence_length=256,
|
750 |
+
generator=torch.Generator("cpu").manual_seed(0)
|
751 |
+
).images[0]
|
752 |
+
return image
|
753 |
+
|
754 |
+
# Combined function to handle model switching based on radio button selection
|
755 |
+
def generate_image(prompt, model_choice):
|
756 |
+
if model_choice == "IG-1":
|
757 |
+
return generate_image_flux(prompt)
|
758 |
+
else: # Default to Stable Diffusion
|
759 |
+
return generate_image_stable_diffusion(prompt)
|
760 |
+
|
761 |
+
# Hardcoded prompts for the images
|
762 |
+
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
763 |
+
hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
|
764 |
hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
765 |
|
766 |
+
# Function to update images based on the selected model
|
767 |
+
def update_images(model_choice):
|
768 |
+
image_1 = generate_image(hardcoded_prompt_1, model_choice)
|
769 |
+
image_2 = generate_image(hardcoded_prompt_2, model_choice)
|
770 |
+
image_3 = generate_image(hardcoded_prompt_3, model_choice)
|
771 |
return image_1, image_2, image_3
|
772 |
|
773 |
|
|
|
1428 |
|
1429 |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
|
1430 |
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
|
1431 |
+
# Add a radio button to choose between IG-1 (Flux) and IG-2 (Stable Diffusion), defaulting to IG-1
|
1432 |
+
model_choice = gr.Radio(label="Select Image Generation Model", choices=["IG-1", "IG-2"], value="IG-1")
|
1433 |
retriever_button = gr.Button("Retriever")
|
1434 |
|
1435 |
clear_button = gr.Button("Clear")
|
|
|
1510 |
events_output = gr.HTML(value=fetch_local_events())
|
1511 |
|
1512 |
with gr.Column():
|
1513 |
+
# image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
|
1514 |
+
# image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
|
1515 |
+
# image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
|
1516 |
+
|
1517 |
+
# Display images
|
1518 |
+
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1, "IG-1"), width=400, height=400)
|
1519 |
+
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2, "IG-1"), width=400, height=400)
|
1520 |
+
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3, "IG-1"), width=400, height=400)
|
1521 |
|
1522 |
refresh_button = gr.Button("Refresh Images")
|
1523 |
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
|