Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -104,15 +104,15 @@ def initialize_gpt_model():
|
|
104 |
def initialize_gpt_mini_model():
|
105 |
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
|
106 |
|
107 |
-
# Initialize the GPT-4o-mini model
|
108 |
-
gpt_mini_model = initialize_gpt_mini_model()
|
109 |
|
110 |
|
111 |
|
112 |
|
113 |
-
|
|
|
114 |
phi_pipe = initialize_phi_model()
|
115 |
gpt_model = initialize_gpt_model()
|
|
|
116 |
|
117 |
|
118 |
# Existing embeddings and vector store for GPT-4o
|
@@ -125,6 +125,11 @@ phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
|
125 |
phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings)
|
126 |
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
|
127 |
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
|
130 |
# Pinecone setup
|
@@ -626,10 +631,10 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
626 |
# Retrieval-based response
|
627 |
if retrieval_mode == "VDB":
|
628 |
logging.debug("Using VDB retrieval mode")
|
629 |
-
retriever = gpt_retriever # Use the same retriever for all GPT models
|
630 |
context = retriever.get_relevant_documents(message)
|
631 |
logging.debug(f"Retrieved context: {context}")
|
632 |
|
|
|
633 |
prompt = prompt_template.format(context=context, question=message)
|
634 |
logging.debug(f"Generated prompt: {prompt}")
|
635 |
|
@@ -640,7 +645,7 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
640 |
chain_type_kwargs={"prompt": prompt_template}
|
641 |
)
|
642 |
response = qa_chain({"query": message})
|
643 |
-
logging.debug(f"Response
|
644 |
return response['result'], extract_addresses(response['result'])
|
645 |
|
646 |
elif retrieval_mode == "KGF":
|
@@ -659,7 +664,6 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
659 |
|
660 |
|
661 |
|
662 |
-
|
663 |
def add_message(history, message):
|
664 |
history.append((message, None))
|
665 |
return history, gr.Textbox(value="", interactive=True, show_label=False)
|
|
|
104 |
def initialize_gpt_mini_model():
|
105 |
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
|
106 |
|
|
|
|
|
107 |
|
108 |
|
109 |
|
110 |
|
111 |
+
|
112 |
+
# Initialize all models
|
113 |
phi_pipe = initialize_phi_model()
|
114 |
gpt_model = initialize_gpt_model()
|
115 |
+
gpt_mini_model = initialize_gpt_mini_model()
|
116 |
|
117 |
|
118 |
# Existing embeddings and vector store for GPT-4o
|
|
|
125 |
phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings)
|
126 |
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
|
127 |
|
128 |
+
#Existing embeddings and vector store for GPT-4o-mini
|
129 |
+
gpt_mini_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
130 |
+
gpt_mini_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_mini_embeddings)
|
131 |
+
gpt_mini_retriever = gpt_mini_vectorstore.as_retriever(search_kwargs={'k': 5})
|
132 |
+
|
133 |
|
134 |
|
135 |
# Pinecone setup
|
|
|
631 |
# Retrieval-based response
|
632 |
if retrieval_mode == "VDB":
|
633 |
logging.debug("Using VDB retrieval mode")
|
|
|
634 |
context = retriever.get_relevant_documents(message)
|
635 |
logging.debug(f"Retrieved context: {context}")
|
636 |
|
637 |
+
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
|
638 |
prompt = prompt_template.format(context=context, question=message)
|
639 |
logging.debug(f"Generated prompt: {prompt}")
|
640 |
|
|
|
645 |
chain_type_kwargs={"prompt": prompt_template}
|
646 |
)
|
647 |
response = qa_chain({"query": message})
|
648 |
+
logging.debug(f"Response: {response}")
|
649 |
return response['result'], extract_addresses(response['result'])
|
650 |
|
651 |
elif retrieval_mode == "KGF":
|
|
|
664 |
|
665 |
|
666 |
|
|
|
667 |
def add_message(history, message):
|
668 |
history.append((message, None))
|
669 |
return history, gr.Textbox(value="", interactive=True, show_label=False)
|