Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -100,13 +100,11 @@ def initialize_phi_model():
|
|
100 |
def initialize_gpt_model():
|
101 |
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
|
102 |
|
103 |
-
|
104 |
-
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o-mini')
|
105 |
|
106 |
# Initialize all models
|
107 |
phi_pipe = initialize_phi_model()
|
108 |
gpt_model = initialize_gpt_model()
|
109 |
-
gpt_mini_model = initialize_gpt_mini_model()
|
110 |
|
111 |
|
112 |
|
@@ -114,9 +112,8 @@ gpt_mini_model = initialize_gpt_mini_model()
|
|
114 |
|
115 |
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
gpt_model = initialize_gpt_model()
|
120 |
|
121 |
|
122 |
|
@@ -351,34 +348,12 @@ Sure! Here's the information you requested:
|
|
351 |
"""
|
352 |
|
353 |
|
354 |
-
# def generate_bot_response(history, choice, retrieval_mode, model_choice):
|
355 |
-
# if not history:
|
356 |
-
# return
|
357 |
-
|
358 |
-
# # Select the model
|
359 |
-
# selected_model = chat_model if model_choice == "LM-1" else phi_pipe
|
360 |
-
|
361 |
-
# response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
|
362 |
-
# history[-1][1] = ""
|
363 |
-
|
364 |
-
# for character in response:
|
365 |
-
# history[-1][1] += character
|
366 |
-
# yield history # Stream each character as it is generated
|
367 |
-
# time.sleep(0.05) # Add a slight delay to simulate streaming
|
368 |
-
|
369 |
-
# yield history # Final yield with the complete response
|
370 |
-
|
371 |
def generate_bot_response(history, choice, retrieval_mode, model_choice):
|
372 |
if not history:
|
373 |
return
|
374 |
|
375 |
-
# Select the model
|
376 |
-
if model_choice == "LM-1"
|
377 |
-
selected_model = gpt_model
|
378 |
-
elif model_choice == "LM-2":
|
379 |
-
selected_model = phi_pipe
|
380 |
-
elif model_choice == "LM-3":
|
381 |
-
selected_model = gpt_mini_model
|
382 |
|
383 |
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
|
384 |
history[-1][1] = ""
|
@@ -394,6 +369,8 @@ def generate_bot_response(history, choice, retrieval_mode, model_choice):
|
|
394 |
|
395 |
|
396 |
|
|
|
|
|
397 |
def generate_tts_response(response, tts_choice):
|
398 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
399 |
if tts_choice == "Alpha":
|
@@ -492,113 +469,11 @@ def clean_response(response_text):
|
|
492 |
|
493 |
import traceback
|
494 |
|
495 |
-
# def generate_answer(message, choice, retrieval_mode, selected_model):
|
496 |
-
# logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
|
497 |
-
|
498 |
-
# # Logic for disabling options for Phi-3.5
|
499 |
-
# if selected_model == "LM-2":
|
500 |
-
# choice = None
|
501 |
-
# retrieval_mode = None
|
502 |
-
|
503 |
-
# try:
|
504 |
-
# # Select the appropriate template based on the choice
|
505 |
-
# if choice == "Details":
|
506 |
-
# prompt_template = QA_CHAIN_PROMPT_1
|
507 |
-
# elif choice == "Conversational":
|
508 |
-
# prompt_template = QA_CHAIN_PROMPT_2
|
509 |
-
# else:
|
510 |
-
# prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
|
511 |
-
|
512 |
-
# # Handle hotel-related queries
|
513 |
-
# if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
|
514 |
-
# logging.debug("Handling hotel-related query")
|
515 |
-
# response = fetch_google_hotels()
|
516 |
-
# logging.debug(f"Hotel response: {response}")
|
517 |
-
# return response, extract_addresses(response)
|
518 |
-
|
519 |
-
# # Handle restaurant-related queries
|
520 |
-
# if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
|
521 |
-
# logging.debug("Handling restaurant-related query")
|
522 |
-
# response = fetch_yelp_restaurants()
|
523 |
-
# logging.debug(f"Restaurant response: {response}")
|
524 |
-
# return response, extract_addresses(response)
|
525 |
-
|
526 |
-
# # Handle flight-related queries
|
527 |
-
# if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
|
528 |
-
# logging.debug("Handling flight-related query")
|
529 |
-
# response = fetch_google_flights()
|
530 |
-
# logging.debug(f"Flight response: {response}")
|
531 |
-
# return response, extract_addresses(response)
|
532 |
-
|
533 |
-
# # Retrieval-based response
|
534 |
-
# if retrieval_mode == "VDB":
|
535 |
-
# logging.debug("Using VDB retrieval mode")
|
536 |
-
# if selected_model == chat_model:
|
537 |
-
# logging.debug("Selected model: LM-1")
|
538 |
-
# retriever = gpt_retriever
|
539 |
-
# context = retriever.get_relevant_documents(message)
|
540 |
-
# logging.debug(f"Retrieved context: {context}")
|
541 |
-
|
542 |
-
# prompt = prompt_template.format(context=context, question=message)
|
543 |
-
# logging.debug(f"Generated prompt: {prompt}")
|
544 |
-
|
545 |
-
# qa_chain = RetrievalQA.from_chain_type(
|
546 |
-
# llm=chat_model,
|
547 |
-
# chain_type="stuff",
|
548 |
-
# retriever=retriever,
|
549 |
-
# chain_type_kwargs={"prompt": prompt_template}
|
550 |
-
# )
|
551 |
-
# response = qa_chain({"query": message})
|
552 |
-
# logging.debug(f"LM-1 response: {response}")
|
553 |
-
# return response['result'], extract_addresses(response['result'])
|
554 |
-
|
555 |
-
# elif selected_model == phi_pipe:
|
556 |
-
# logging.debug("Selected model: LM-2")
|
557 |
-
# retriever = phi_retriever
|
558 |
-
# context_documents = retriever.get_relevant_documents(message)
|
559 |
-
# context = "\n".join([doc.page_content for doc in context_documents])
|
560 |
-
# logging.debug(f"Retrieved context for LM-2: {context}")
|
561 |
-
|
562 |
-
# # Use the correct template variable
|
563 |
-
# prompt = phi_custom_template.format(context=context, question=message)
|
564 |
-
# logging.debug(f"Generated LM-2 prompt: {prompt}")
|
565 |
-
|
566 |
-
# response = selected_model(prompt, **{
|
567 |
-
# "max_new_tokens": 400,
|
568 |
-
# "return_full_text": True,
|
569 |
-
# "temperature": 0.7,
|
570 |
-
# "do_sample": True,
|
571 |
-
# })
|
572 |
-
|
573 |
-
# if response:
|
574 |
-
# generated_text = response[0]['generated_text']
|
575 |
-
# logging.debug(f"LM-2 Response: {generated_text}")
|
576 |
-
# cleaned_response = clean_response(generated_text)
|
577 |
-
# return cleaned_response, extract_addresses(cleaned_response)
|
578 |
-
# else:
|
579 |
-
# logging.error("LM-2 did not return any response.")
|
580 |
-
# return "No response generated.", []
|
581 |
-
|
582 |
-
# elif retrieval_mode == "KGF":
|
583 |
-
# logging.debug("Using KGF retrieval mode")
|
584 |
-
# response = chain_neo4j.invoke({"question": message})
|
585 |
-
# logging.debug(f"KGF response: {response}")
|
586 |
-
# return response, extract_addresses(response)
|
587 |
-
# else:
|
588 |
-
# logging.error("Invalid retrieval mode selected.")
|
589 |
-
# return "Invalid retrieval mode selected.", []
|
590 |
-
|
591 |
-
# except Exception as e:
|
592 |
-
# logging.error(f"Error in generate_answer: {str(e)}")
|
593 |
-
# logging.error(traceback.format_exc())
|
594 |
-
# return "Sorry, I encountered an error while processing your request.", []
|
595 |
-
|
596 |
-
|
597 |
def generate_answer(message, choice, retrieval_mode, selected_model):
|
598 |
logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
|
599 |
|
600 |
-
# Logic for disabling options for Phi-3.5
|
601 |
-
if selected_model ==
|
602 |
choice = None
|
603 |
retrieval_mode = None
|
604 |
|
@@ -611,11 +486,32 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
611 |
else:
|
612 |
prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
|
613 |
|
614 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
if retrieval_mode == "VDB":
|
616 |
logging.debug("Using VDB retrieval mode")
|
617 |
-
if selected_model
|
618 |
-
logging.debug(
|
619 |
retriever = gpt_retriever
|
620 |
context = retriever.get_relevant_documents(message)
|
621 |
logging.debug(f"Retrieved context: {context}")
|
@@ -624,22 +520,23 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
624 |
logging.debug(f"Generated prompt: {prompt}")
|
625 |
|
626 |
qa_chain = RetrievalQA.from_chain_type(
|
627 |
-
llm=
|
628 |
chain_type="stuff",
|
629 |
retriever=retriever,
|
630 |
chain_type_kwargs={"prompt": prompt_template}
|
631 |
)
|
632 |
response = qa_chain({"query": message})
|
633 |
-
logging.debug(f"LM-1
|
634 |
return response['result'], extract_addresses(response['result'])
|
635 |
|
636 |
-
elif selected_model == phi_pipe:
|
637 |
logging.debug("Selected model: LM-2")
|
638 |
retriever = phi_retriever
|
639 |
context_documents = retriever.get_relevant_documents(message)
|
640 |
context = "\n".join([doc.page_content for doc in context_documents])
|
641 |
logging.debug(f"Retrieved context for LM-2: {context}")
|
642 |
|
|
|
643 |
prompt = phi_custom_template.format(context=context, question=message)
|
644 |
logging.debug(f"Generated LM-2 prompt: {prompt}")
|
645 |
|
@@ -659,13 +556,11 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
659 |
logging.error("LM-2 did not return any response.")
|
660 |
return "No response generated.", []
|
661 |
|
662 |
-
# KGF retrieval mode
|
663 |
elif retrieval_mode == "KGF":
|
664 |
logging.debug("Using KGF retrieval mode")
|
665 |
response = chain_neo4j.invoke({"question": message})
|
666 |
logging.debug(f"KGF response: {response}")
|
667 |
return response, extract_addresses(response)
|
668 |
-
|
669 |
else:
|
670 |
logging.error("Invalid retrieval mode selected.")
|
671 |
return "Invalid retrieval mode selected.", []
|
@@ -679,6 +574,8 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
679 |
|
680 |
|
681 |
|
|
|
|
|
682 |
def add_message(history, message):
|
683 |
history.append((message, None))
|
684 |
return history, gr.Textbox(value="", interactive=True, show_label=False)
|
@@ -1152,24 +1049,12 @@ def handle_retrieval_mode_change(choice):
|
|
1152 |
|
1153 |
|
1154 |
|
1155 |
-
# def handle_model_choice_change(selected_model):
|
1156 |
-
# if selected_model == "LM-2":
|
1157 |
-
# # Disable retrieval mode and select style when LM-2 is selected
|
1158 |
-
# return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
1159 |
-
# elif selected_model == "LM-1":
|
1160 |
-
# # Enable retrieval mode and select style for LM-1
|
1161 |
-
# return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1162 |
-
# else:
|
1163 |
-
# # Default case: allow interaction
|
1164 |
-
# return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1165 |
-
|
1166 |
-
|
1167 |
def handle_model_choice_change(selected_model):
|
1168 |
if selected_model == "LM-2":
|
1169 |
# Disable retrieval mode and select style when LM-2 is selected
|
1170 |
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
1171 |
-
elif selected_model
|
1172 |
-
# Enable retrieval mode and select style for LM-1
|
1173 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1174 |
else:
|
1175 |
# Default case: allow interaction
|
@@ -1179,6 +1064,9 @@ def handle_model_choice_change(selected_model):
|
|
1179 |
|
1180 |
|
1181 |
|
|
|
|
|
|
|
1182 |
def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
|
1183 |
return f"""
|
1184 |
{name}
|
|
|
100 |
def initialize_gpt_model():
|
101 |
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
|
102 |
|
103 |
+
|
|
|
104 |
|
105 |
# Initialize all models
|
106 |
phi_pipe = initialize_phi_model()
|
107 |
gpt_model = initialize_gpt_model()
|
|
|
108 |
|
109 |
|
110 |
|
|
|
112 |
|
113 |
|
114 |
|
115 |
+
|
116 |
+
|
|
|
117 |
|
118 |
|
119 |
|
|
|
348 |
"""
|
349 |
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
def generate_bot_response(history, choice, retrieval_mode, model_choice):
|
352 |
if not history:
|
353 |
return
|
354 |
|
355 |
+
# Select the model
|
356 |
+
selected_model = chat_model if model_choice == "LM-1" else phi_pipe
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
|
359 |
history[-1][1] = ""
|
|
|
369 |
|
370 |
|
371 |
|
372 |
+
|
373 |
+
|
374 |
def generate_tts_response(response, tts_choice):
|
375 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
376 |
if tts_choice == "Alpha":
|
|
|
469 |
|
470 |
import traceback
|
471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
def generate_answer(message, choice, retrieval_mode, selected_model):
|
473 |
logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
|
474 |
|
475 |
+
# Logic for disabling options for Phi-3.5
|
476 |
+
if selected_model == "LM-2":
|
477 |
choice = None
|
478 |
retrieval_mode = None
|
479 |
|
|
|
486 |
else:
|
487 |
prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
|
488 |
|
489 |
+
# Handle hotel-related queries
|
490 |
+
if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
|
491 |
+
logging.debug("Handling hotel-related query")
|
492 |
+
response = fetch_google_hotels()
|
493 |
+
logging.debug(f"Hotel response: {response}")
|
494 |
+
return response, extract_addresses(response)
|
495 |
+
|
496 |
+
# Handle restaurant-related queries
|
497 |
+
if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
|
498 |
+
logging.debug("Handling restaurant-related query")
|
499 |
+
response = fetch_yelp_restaurants()
|
500 |
+
logging.debug(f"Restaurant response: {response}")
|
501 |
+
return response, extract_addresses(response)
|
502 |
+
|
503 |
+
# Handle flight-related queries
|
504 |
+
if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
|
505 |
+
logging.debug("Handling flight-related query")
|
506 |
+
response = fetch_google_flights()
|
507 |
+
logging.debug(f"Flight response: {response}")
|
508 |
+
return response, extract_addresses(response)
|
509 |
+
|
510 |
+
# Retrieval-based response
|
511 |
if retrieval_mode == "VDB":
|
512 |
logging.debug("Using VDB retrieval mode")
|
513 |
+
if selected_model == chat_model:
|
514 |
+
logging.debug("Selected model: LM-1")
|
515 |
retriever = gpt_retriever
|
516 |
context = retriever.get_relevant_documents(message)
|
517 |
logging.debug(f"Retrieved context: {context}")
|
|
|
520 |
logging.debug(f"Generated prompt: {prompt}")
|
521 |
|
522 |
qa_chain = RetrievalQA.from_chain_type(
|
523 |
+
llm=chat_model,
|
524 |
chain_type="stuff",
|
525 |
retriever=retriever,
|
526 |
chain_type_kwargs={"prompt": prompt_template}
|
527 |
)
|
528 |
response = qa_chain({"query": message})
|
529 |
+
logging.debug(f"LM-1 response: {response}")
|
530 |
return response['result'], extract_addresses(response['result'])
|
531 |
|
532 |
+
elif selected_model == phi_pipe:
|
533 |
logging.debug("Selected model: LM-2")
|
534 |
retriever = phi_retriever
|
535 |
context_documents = retriever.get_relevant_documents(message)
|
536 |
context = "\n".join([doc.page_content for doc in context_documents])
|
537 |
logging.debug(f"Retrieved context for LM-2: {context}")
|
538 |
|
539 |
+
# Use the correct template variable
|
540 |
prompt = phi_custom_template.format(context=context, question=message)
|
541 |
logging.debug(f"Generated LM-2 prompt: {prompt}")
|
542 |
|
|
|
556 |
logging.error("LM-2 did not return any response.")
|
557 |
return "No response generated.", []
|
558 |
|
|
|
559 |
elif retrieval_mode == "KGF":
|
560 |
logging.debug("Using KGF retrieval mode")
|
561 |
response = chain_neo4j.invoke({"question": message})
|
562 |
logging.debug(f"KGF response: {response}")
|
563 |
return response, extract_addresses(response)
|
|
|
564 |
else:
|
565 |
logging.error("Invalid retrieval mode selected.")
|
566 |
return "Invalid retrieval mode selected.", []
|
|
|
574 |
|
575 |
|
576 |
|
577 |
+
|
578 |
+
|
579 |
def add_message(history, message):
|
580 |
history.append((message, None))
|
581 |
return history, gr.Textbox(value="", interactive=True, show_label=False)
|
|
|
1049 |
|
1050 |
|
1051 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1052 |
def handle_model_choice_change(selected_model):
|
1053 |
if selected_model == "LM-2":
|
1054 |
# Disable retrieval mode and select style when LM-2 is selected
|
1055 |
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
1056 |
+
elif selected_model == "LM-1":
|
1057 |
+
# Enable retrieval mode and select style for LM-1
|
1058 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1059 |
else:
|
1060 |
# Default case: allow interaction
|
|
|
1064 |
|
1065 |
|
1066 |
|
1067 |
+
|
1068 |
+
|
1069 |
+
|
1070 |
def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
|
1071 |
return f"""
|
1072 |
{name}
|