Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1125,10 +1125,48 @@ def handle_model_choice_change(selected_model):
|
|
1125 |
# Default case: allow interaction
|
1126 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1128 |
import gradio as gr
|
1129 |
import torch
|
1130 |
from diffusers import FluxPipeline
|
1131 |
from PIL import Image
|
|
|
1132 |
|
1133 |
# Load the Flux pipeline
|
1134 |
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
@@ -1158,9 +1196,12 @@ hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in
|
|
1158 |
|
1159 |
# Generate the images immediately
|
1160 |
img1_path = generate_flux_image(hardcoded_prompt_1)
|
|
|
|
|
1161 |
img2_path = generate_flux_image(hardcoded_prompt_2)
|
1162 |
-
|
1163 |
|
|
|
1164 |
|
1165 |
|
1166 |
|
@@ -1462,10 +1503,13 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1462 |
|
1463 |
with gr.Column():
|
1464 |
# Display the pre-generated images directly
|
1465 |
-
image_output_1 = gr.Image(value=img1_path)
|
1466 |
-
image_output_2 = gr.Image(value=img2_path)
|
1467 |
-
image_output_3 = gr.Image(value=img3_path)
|
1468 |
-
|
|
|
|
|
|
|
1469 |
|
1470 |
|
1471 |
|
|
|
1125 |
# Default case: allow interaction
|
1126 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1127 |
|
1128 |
+
# import gradio as gr
|
1129 |
+
# import torch
|
1130 |
+
# from diffusers import FluxPipeline
|
1131 |
+
# from PIL import Image
|
1132 |
+
|
1133 |
+
# # Load the Flux pipeline
|
1134 |
+
# flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
1135 |
+
# flux_pipe.enable_model_cpu_offload() # Save some VRAM by offloading to CPU if needed
|
1136 |
+
|
1137 |
+
# # Function to generate image using Flux
|
1138 |
+
# def generate_flux_image(prompt: str):
|
1139 |
+
# generator = torch.Generator("cpu").manual_seed(0) # For reproducibility
|
1140 |
+
# image = flux_pipe(
|
1141 |
+
# prompt,
|
1142 |
+
# guidance_scale=0.0,
|
1143 |
+
# num_inference_steps=4,
|
1144 |
+
# max_sequence_length=256,
|
1145 |
+
# generator=generator
|
1146 |
+
# ).images[0]
|
1147 |
+
|
1148 |
+
# # Save image temporarily and return for display
|
1149 |
+
# temp_image_path = f"temp_flux_image_{hash(prompt)}.png"
|
1150 |
+
# image.save(temp_image_path)
|
1151 |
+
|
1152 |
+
# return temp_image_path
|
1153 |
+
|
1154 |
+
# # Hardcoded prompts for generating images
|
1155 |
+
# hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
1156 |
+
# hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
|
1157 |
+
# hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
1158 |
+
|
1159 |
+
# # Generate the images immediately
|
1160 |
+
# img1_path = generate_flux_image(hardcoded_prompt_1)
|
1161 |
+
# img2_path = generate_flux_image(hardcoded_prompt_2)
|
1162 |
+
# img3_path = generate_flux_image(hardcoded_prompt_3)
|
1163 |
+
|
1164 |
+
|
1165 |
import gradio as gr
|
1166 |
import torch
|
1167 |
from diffusers import FluxPipeline
|
1168 |
from PIL import Image
|
1169 |
+
import time
|
1170 |
|
1171 |
# Load the Flux pipeline
|
1172 |
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
|
|
1196 |
|
1197 |
# Generate the images immediately
|
1198 |
img1_path = generate_flux_image(hardcoded_prompt_1)
|
1199 |
+
time.sleep(2) # Wait for 2 seconds before generating the next image
|
1200 |
+
|
1201 |
img2_path = generate_flux_image(hardcoded_prompt_2)
|
1202 |
+
time.sleep(2) # Wait for 2 seconds before generating the next image
|
1203 |
|
1204 |
+
img3_path = generate_flux_image(hardcoded_prompt_3)
|
1205 |
|
1206 |
|
1207 |
|
|
|
1503 |
|
1504 |
with gr.Column():
|
1505 |
# Display the pre-generated images directly
|
1506 |
+
# image_output_1 = gr.Image(value=img1_path)
|
1507 |
+
# image_output_2 = gr.Image(value=img2_path)
|
1508 |
+
# image_output_3 = gr.Image(value=img3_path)
|
1509 |
+
image_output_1 = gr.Image(value=img1_path, label="Image 1")
|
1510 |
+
image_output_2 = gr.Image(value=img2_path, label="Image 2")
|
1511 |
+
image_output_3 = gr.Image(value=img3_path, label="Image 3")
|
1512 |
+
|
1513 |
|
1514 |
|
1515 |
|