Pijush2023 commited on
Commit
8fa1e7e
·
verified ·
1 Parent(s): 44fe0b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -5
app.py CHANGED
@@ -1125,10 +1125,48 @@ def handle_model_choice_change(selected_model):
1125
  # Default case: allow interaction
1126
  return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
  import gradio as gr
1129
  import torch
1130
  from diffusers import FluxPipeline
1131
  from PIL import Image
 
1132
 
1133
  # Load the Flux pipeline
1134
  flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
@@ -1158,9 +1196,12 @@ hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in
1158
 
1159
  # Generate the images immediately
1160
  img1_path = generate_flux_image(hardcoded_prompt_1)
 
 
1161
  img2_path = generate_flux_image(hardcoded_prompt_2)
1162
- img3_path = generate_flux_image(hardcoded_prompt_3)
1163
 
 
1164
 
1165
 
1166
 
@@ -1462,10 +1503,13 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1462
 
1463
  with gr.Column():
1464
  # Display the pre-generated images directly
1465
- image_output_1 = gr.Image(value=img1_path)
1466
- image_output_2 = gr.Image(value=img2_path)
1467
- image_output_3 = gr.Image(value=img3_path)
1468
-
 
 
 
1469
 
1470
 
1471
 
 
1125
  # Default case: allow interaction
1126
  return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
1127
 
1128
+ # import gradio as gr
1129
+ # import torch
1130
+ # from diffusers import FluxPipeline
1131
+ # from PIL import Image
1132
+
1133
+ # # Load the Flux pipeline
1134
+ # flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
1135
+ # flux_pipe.enable_model_cpu_offload() # Save some VRAM by offloading to CPU if needed
1136
+
1137
+ # # Function to generate image using Flux
1138
+ # def generate_flux_image(prompt: str):
1139
+ # generator = torch.Generator("cpu").manual_seed(0) # For reproducibility
1140
+ # image = flux_pipe(
1141
+ # prompt,
1142
+ # guidance_scale=0.0,
1143
+ # num_inference_steps=4,
1144
+ # max_sequence_length=256,
1145
+ # generator=generator
1146
+ # ).images[0]
1147
+
1148
+ # # Save image temporarily and return for display
1149
+ # temp_image_path = f"temp_flux_image_{hash(prompt)}.png"
1150
+ # image.save(temp_image_path)
1151
+
1152
+ # return temp_image_path
1153
+
1154
+ # # Hardcoded prompts for generating images
1155
+ # hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
1156
+ # hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
1157
+ # hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
1158
+
1159
+ # # Generate the images immediately
1160
+ # img1_path = generate_flux_image(hardcoded_prompt_1)
1161
+ # img2_path = generate_flux_image(hardcoded_prompt_2)
1162
+ # img3_path = generate_flux_image(hardcoded_prompt_3)
1163
+
1164
+
1165
  import gradio as gr
1166
  import torch
1167
  from diffusers import FluxPipeline
1168
  from PIL import Image
1169
+ import time
1170
 
1171
  # Load the Flux pipeline
1172
  flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
 
1196
 
1197
  # Generate the images immediately
1198
  img1_path = generate_flux_image(hardcoded_prompt_1)
1199
+ time.sleep(2) # Wait for 2 seconds before generating the next image
1200
+
1201
  img2_path = generate_flux_image(hardcoded_prompt_2)
1202
+ time.sleep(2) # Wait for 2 seconds before generating the next image
1203
 
1204
+ img3_path = generate_flux_image(hardcoded_prompt_3)
1205
 
1206
 
1207
 
 
1503
 
1504
  with gr.Column():
1505
  # Display the pre-generated images directly
1506
+ # image_output_1 = gr.Image(value=img1_path)
1507
+ # image_output_2 = gr.Image(value=img2_path)
1508
+ # image_output_3 = gr.Image(value=img3_path)
1509
+ image_output_1 = gr.Image(value=img1_path, label="Image 1")
1510
+ image_output_2 = gr.Image(value=img2_path, label="Image 2")
1511
+ image_output_3 = gr.Image(value=img3_path, label="Image 3")
1512
+
1513
 
1514
 
1515