File size: 11,298 Bytes
89f9a8d
 
72f9629
 
89f9a8d
 
c0e52ad
 
 
89f9a8d
 
 
 
 
 
 
afba6b8
d5d696e
fc729c7
 
d5d696e
fc729c7
 
bc3d031
372f84d
bc3d031
 
afba6b8
501c3b1
afba6b8
bc3d031
 
 
 
 
 
 
 
 
 
 
 
773fac0
bc3d031
40cf9b4
7f14dcf
40cf9b4
39ca037
ef4a36f
40cf9b4
ef4a36f
 
 
 
 
 
 
3bc3619
ef4a36f
 
 
 
 
d847984
 
 
 
 
 
 
 
 
 
ef4a36f
 
1a8ab89
 
 
 
 
ef4a36f
 
 
a3c68c5
3bc3619
 
 
40cf9b4
ef4a36f
 
 
 
 
3bc3619
ef4a36f
 
 
 
 
ae5b369
d847984
09b62c7
 
 
 
d847984
 
 
 
 
 
ef4a36f
6a2a788
 
ef4a36f
 
 
 
 
 
09b62c7
 
 
 
ef4a36f
 
 
09b62c7
 
 
 
ef4a36f
 
3bc3619
7b657a7
3bc3619
 
2abf58c
9e6028d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f14dcf
f398b03
7f14dcf
40cf9b4
 
 
7f14dcf
 
 
 
 
 
 
fc729c7
7f14dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3d031
 
40cf9b4
f58b2a4
e869110
bc3d031
 
5b730e0
 
 
bc3d031
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import sys
import numpy as np 
import pandas as pd
import streamlit as st

from rdkit import Chem
from rdkit.Chem import Draw

sys.path.insert(0, os.path.abspath("src/"))

st.set_page_config(layout="wide")

basepath = os.path.dirname(__file__)
datapath = os.path.join(basepath, "data")

st.title('HyperDTI: Task-conditioned modeling of drug-target interactions.\n')
st.markdown('')
st.markdown(
    """
    🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti)    📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
    """
)


def about_page():
    st.markdown(
        """      
        ### About
        
        HyperNetworks have been established as an effective technique to achieve fast adaptation of parameters for 
        neural networks. Recently, HyperNetwork predictions conditioned on descriptors of tasks have improved 
        multi-task generalization in various domains, such as personalized federated learning and neural architecture 
        search. Especially powerful results were achieved in few- and zero-shot settings, attributed to the increased 
        information sharing by the HyperNetwork. With the rise of new diseases fast discovery of drugs is needed which 
        requires models that are able to generalize drug-target interaction predictions in low-data scenarios. 
        
        In this work, we propose the HyperPCM model, a task-conditioned HyperNetwork approach for the problem of 
        predicting drug-target interactions in drug discovery. Our model learns to generate a QSAR model specialized on
        a given protein target. We demonstrate state-of-the-art performance over previous methods on multiple 
        well-known benchmarks, particularly in zero-shot settings for unseen protein targets.
        """
        #st.image('hyper-dti.png') todo 
    )


def display_dti():
    st.markdown('##')
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown('### Drug')
        smiles = st.text_input('Enter the SMILES of the query drug compound', value='CC(=O)OC1=CC=CC=C1C(=O)O', placeholder='CC(=O)OC1=CC=CC=C1C(=O)O')
        
        if smiles:
            mol = Chem.MolFromSmiles(smiles)
            mol_img = Chem.Draw.MolToImage(mol)
            st.image(mol_img) #, width = 140)
            
            selected_encoder = st.selectbox(
                'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
            )
            if selected_encoder == 'CDDD':
                from cddd.inference import InferenceModel
                CDDD_MODEL_DIR = 'src/encoders/cddd'
                cddd_model = InferenceModel(CDDD_MODEL_DIR)
                embedding = cddd_model.seq_to_emb([smiles])
                #from huggingface_hub import hf_hub_download
                #precomputed_embs = f'{selected_encoder}_encoding.csv'
                #REPO_ID = "emmas96/Lenselink"
                #embs_path = hf_hub_download(REPO_ID, precomputed_embs)
                #embs = pd.read_csv(embs_path)
                #embedding = embs[smiles]
            elif selected_encoder == 'MolBERT':
                from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
                from huggingface_hub import hf_hub_download
                CDDD_MODEL_DIR = 'encoders/molbert/last.ckpt'
                REPO_ID = "emmas96/hyperpcm"
                checkpoint_path = hf_hub_download(REPO_ID, MOLBERT_MODEL_DIR)
                molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
                embedding = molbert_model.transform([smiles])
            else: 
                st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
                embedding = None
            if embedding is not None:
                st.write(f'{selected_encoder} embedding')
                st.write(embedding)

    with col2:
        st.markdown('### Target')
        sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
        
        if sequence:
            st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
            
            selected_encoder = st.selectbox(
                'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
            )
            if selected_encoder == 'SeqVec':
                from bio_embeddings.embed import SeqVecEmbedder
                encoder = SeqVecEmbedder()
                embeddings = encoder.embed_batch([sequence])
                for emb in embeddings:
                    embedding = encoder.reduce_per_protein(emb)
                    break
                #from huggingface_hub import hf_hub_download
                #precomputed_embs = f'{selected_encoder}_encoding.csv'
                #REPO_ID = "emmas96/Lenselink"
                #embs_path = hf_hub_download(REPO_ID, precomputed_embs)
                #embs = pd.read_csv(embs_path)
                #embedding = embs[sequence]
            elif selected_encoder == 'UniRep':
                from jax_unirep.utils import load_params
                params = load_params() 
                from jax_unirep.featurize import get_reps                               
                embedding, h_final, c_final = get_reps([sequence])
                embedding = embedding.mean(axis=0)
            elif selected_encoder == 'ESM-1b':
                from bio_embeddings.embed import ESM1bEmbedder
                encoder = ESM1bEmbedder()
                embeddings = encoder.embed_batch([sequence])
                for emb in embeddings:
                    embedding = encoder.reduce_per_protein(emb)
                    break
            elif selected_encoder == 'ProtT5':
                from bio_embeddings.embed import ProtTransT5XLU50Embedder
                encoder = ProtTransT5XLU50Embedder()
                embeddings = encoder.embed_batch([sequence])
                for emb in embeddings:
                    embedding = encoder.reduce_per_protein(emb)
                    break
            else: 
                st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
                embedding = None
            if embedding is not None:
                st.write(f'{selected_encoder} embedding')
                st.write(embedding)

def retrieval():
    st.markdown('##')

    st.markdown('### Target')
    sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
    
    if sequence:
        st.markdown('\n\n\n\n Plot of protein to be added soon. \n\n\n\n')
        
        selected_encoder = st.selectbox(
            'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
        )
    
    st.markdown('### Retrieval of top-5 drug coupound from ChEMBL:')
    col1, col2, col3, col4, col5 = st.columns(5)
    with col1:
        smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
        mol = Chem.MolFromSmiles(smiles)
        mol_img = Chem.Draw.MolToImage(mol)
        st.image(mol_img) 

    with col2:
        smiles = 'COc1cc(C=O)ccc1O'
        mol = Chem.MolFromSmiles(smiles)
        mol_img = Chem.Draw.MolToImage(mol)
        st.image(mol_img) 

    with col3:
        smiles = 'CC(=O)Nc1ccc(O)cc1'
        mol = Chem.MolFromSmiles(smiles)
        mol_img = Chem.Draw.MolToImage(mol)
        st.image(mol_img) 

    with col4:
        smiles = 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1'
        mol = Chem.MolFromSmiles(smiles)
        mol_img = Chem.Draw.MolToImage(mol)
        st.image(mol_img) 

    with col5:
        smiles = 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1'
        mol = Chem.MolFromSmiles(smiles)
        mol_img = Chem.Draw.MolToImage(mol)
        st.image(mol_img) 
        

def display_protein():
    """
    sequence = st.text_input("Enter the amino-acid sequence of the query protein target", value="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA", placeholder="HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA")
    
    if sequence:
        def esm_search(model, sequnce, batch_converter,top_k=5):
        batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequnce),])
        
        # Extract per-residue representations (on CPU)
        with torch.no_grad():
            results = model(batch_tokens, repr_layers=[12], return_contacts=True)
        token_representations = results["representations"][12]
    
        token_list = token_representations.tolist()[0][0][0]
        
        client = Client(
            url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
        
        result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
        
        result_temp_seq = []
        
        for i in result:
            # result_temp_coords = i['seq']
            result_temp_seq.append(i['seq'])
        
        result_temp_seq = list(set(result_temp_seq))
    
        result_temp_seq = esm_search(model, sequence, esm_search,top_k=5)
        st.text('search result: ')
        # tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
        if st.button(result_temp_seq[0]):
            print(result_temp_seq[0])
        elif st.button(result_temp_seq[1]):
            print(result_temp_seq[1])
        elif st.button(result_temp_seq[2]):
            print(result_temp_seq[2])
        elif st.button(result_temp_seq[3]):
            print(result_temp_seq[3])
        elif st.button(result_temp_seq[4]):
            print(result_temp_seq[4])
    
        start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
        def show_protein_structure(sequence):
    headers = {
        'Content-Type': 'application/x-www-form-urlencoded',
        }
    response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
    name = sequence[:3] + sequence[-3:]
    pdb_string = response.content.decode('utf-8')
    with open('predicted.pdb', 'w') as f:
        f.write(pdb_string)
    struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
    b_value = round(struct.b_factor.mean(), 4)
    render_mol(pdb_string)
        if residues_marker:
            start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
        else:
            start[3] = showmol(render_pdb(id = id_PDB))
        st.session_state['xq'] = st.session_state.model
    
    # example proteins ["HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA"], ["AHKLFIGGLPNYLNDDQVKELLTSFGPLKAFNLVKDSATGLSKGYAFCEYVDINVTDQAIAGLNGMQLGDKKLLVQRASVGAKNA"]
    """

page_names_to_func = {
    'About': about_page,
    #'Display DTI': display_dti,
    #'Retrieve Top-k': retrieval
}

selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
st.sidebar.markdown('')
page_names_to_func[selected_page]()