emmas96 commited on
Commit
d847984
·
1 Parent(s): ca0a8fe

redirect SeqVec

Browse files
Files changed (1) hide show
  1. app.py +20 -20
app.py CHANGED
@@ -61,16 +61,16 @@ def display_dti():
61
  'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
62
  )
63
  if selected_encoder == 'CDDD':
64
- #from cddd.inference import InferenceModel
65
- #CDDD_MODEL_DIR = 'src/encoders/cddd'
66
- #cddd_model = InferenceModel(CDDD_MODEL_DIR)
67
- #embedding = cddd_model.seq_to_emb([smiles])
68
- from huggingface_hub import hf_hub_download
69
- precomputed_embs = f'{selected_encoder}_encoding.csv'
70
- REPO_ID = "emmas96/Lenselink"
71
- embs_path = hf_hub_download(REPO_ID, precomputed_embs)
72
- embs = pd.read_csv(embs_path)
73
- embedding = embs[smiles]
74
  elif selected_encoder == 'MolBERT':
75
  from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
76
  from huggingface_hub import hf_hub_download
@@ -97,16 +97,16 @@ def display_dti():
97
  'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
98
  )
99
  if selected_encoder == 'SeqVec':
100
- #from bio_embeddings.embed import SeqVecEmbedder
101
- #encoder = SeqVecEmbedder()
102
- #embedding = encoder([sequence])
103
- #embedding = encoder.reduce_per_protein(embedding)
104
- from huggingface_hub import hf_hub_download
105
- precomputed_embs = f'{selected_encoder}_encoding.csv'
106
- REPO_ID = "emmas96/Lenselink"
107
- embs_path = hf_hub_download(REPO_ID, precomputed_embs)
108
- embs = pd.read_csv(embs_path)
109
- embedding = embs[sequence]
110
  elif selected_encoder == 'UniRep':
111
  from jax_unirep.utils import load_params
112
  params = load_params()
 
61
  'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
62
  )
63
  if selected_encoder == 'CDDD':
64
+ from cddd.inference import InferenceModel
65
+ CDDD_MODEL_DIR = 'src/encoders/cddd'
66
+ cddd_model = InferenceModel(CDDD_MODEL_DIR)
67
+ embedding = cddd_model.seq_to_emb([smiles])
68
+ #from huggingface_hub import hf_hub_download
69
+ #precomputed_embs = f'{selected_encoder}_encoding.csv'
70
+ #REPO_ID = "emmas96/Lenselink"
71
+ #embs_path = hf_hub_download(REPO_ID, precomputed_embs)
72
+ #embs = pd.read_csv(embs_path)
73
+ #embedding = embs[smiles]
74
  elif selected_encoder == 'MolBERT':
75
  from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
76
  from huggingface_hub import hf_hub_download
 
97
  'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
98
  )
99
  if selected_encoder == 'SeqVec':
100
+ from src.bio_embeddings.embed import SeqVecEmbedder
101
+ encoder = SeqVecEmbedder()
102
+ embedding = encoder([sequence])
103
+ embedding = encoder.reduce_per_protein(embedding)
104
+ #from huggingface_hub import hf_hub_download
105
+ #precomputed_embs = f'{selected_encoder}_encoding.csv'
106
+ #REPO_ID = "emmas96/Lenselink"
107
+ #embs_path = hf_hub_download(REPO_ID, precomputed_embs)
108
+ #embs = pd.read_csv(embs_path)
109
+ #embedding = embs[sequence]
110
  elif selected_encoder == 'UniRep':
111
  from jax_unirep.utils import load_params
112
  params = load_params()