File size: 17,262 Bytes
463c8b4
a6968c2
c9b3ae0
463c8b4
973658c
463c8b4
3fa2049
a6968c2
463c8b4
 
 
 
0456412
 
 
 
c278ebf
6741b3e
5eb9bf1
 
 
 
 
 
 
 
 
 
90e24e0
3fa2049
0456412
6741b3e
0456412
 
463c8b4
c9b3ae0
a6968c2
463c8b4
 
 
a6968c2
 
463c8b4
 
 
a6968c2
 
463c8b4
eea533f
463c8b4
 
 
 
 
 
 
 
 
 
0456412
 
 
a6968c2
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
3fa2049
cbd84d4
3fa2049
 
 
 
5eb9bf1
 
 
 
 
 
3fa2049
 
 
 
 
 
 
 
 
5eb9bf1
3fa2049
 
 
 
 
5eb9bf1
3fa2049
5eb9bf1
3fa2049
 
5eb9bf1
 
 
 
 
 
 
3fa2049
 
 
 
 
 
 
 
 
6741b3e
3fa2049
 
 
6741b3e
463c8b4
0456412
463c8b4
90e24e0
463c8b4
a6968c2
0456412
 
 
6741b3e
0456412
c9b3ae0
41eb6bd
3fa2049
463c8b4
c9b3ae0
 
463c8b4
 
 
c9b3ae0
a8cd932
 
 
 
463c8b4
 
41eb6bd
463c8b4
0456412
 
6741b3e
463c8b4
 
0456412
463c8b4
 
 
 
 
 
0456412
463c8b4
 
 
 
 
 
0456412
463c8b4
0456412
3683afe
463c8b4
 
5eb9bf1
6741b3e
51aebc3
3800ddf
3fa2049
6741b3e
3800ddf
3fa2049
3800ddf
3fa2049
eea533f
51aebc3
 
6741b3e
51aebc3
5eb9bf1
9277e15
6741b3e
 
 
3fa2049
 
 
 
 
 
 
 
 
 
 
 
 
9277e15
3fa2049
6741b3e
9277e15
 
 
 
 
 
 
3fa2049
 
 
 
 
 
 
 
 
 
 
 
6741b3e
 
9277e15
463c8b4
0456412
463c8b4
 
 
 
 
 
 
 
 
 
 
9277e15
6741b3e
 
 
463c8b4
 
 
a8cd932
 
0456412
463c8b4
 
67dd49b
 
 
3fa2049
 
67dd49b
 
 
 
0456412
67dd49b
0456412
3fa2049
0456412
3fa2049
0456412
 
 
6741b3e
a8cd932
9277e15
463c8b4
 
 
 
 
0456412
9277e15
463c8b4
6741b3e
 
 
 
463c8b4
0456412
9277e15
6741b3e
463c8b4
3fa2049
 
6741b3e
3fa2049
 
 
0456412
c0b6a0b
a8cd932
0456412
 
3fa2049
0456412
 
 
 
6741b3e
 
3fa2049
6741b3e
3fa2049
6741b3e
 
 
 
 
 
3fa2049
6741b3e
5eb9bf1
6741b3e
3fa2049
6741b3e
5eb9bf1
3fa2049
6741b3e
 
 
 
 
3fa2049
6741b3e
 
0456412
3fa2049
 
 
eea533f
463c8b4
eea533f
463c8b4
3fa2049
9277e15
463c8b4
 
0456412
463c8b4
3fa2049
41eb6bd
9277e15
 
a6968c2
fe67870
e24be23
0456412
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
import asyncio

# Try importing pypdfium2 and pytesseract, fall back to pdfplumber
try:
    import pypdfium2 as pdfium
    import pytesseract
    from PIL import Image
    HAS_PYPDFIUM2 = True
except ImportError:
    HAS_PYPDFIUM2 = False
    import pdfplumber

# Configure logging
logging.basicConfig(level=logging.INFO)
logging.getLogger("pdfminer").setLevel(logging.ERROR)
logger = logging.getLogger(__name__)

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

async def extract_all_pages_async(file_path: str, progress_callback=None, force_ocr=False) -> str:
    try:
        extracted_text = ""
        total_pages = 0
        text_chunks = []

        if HAS_PYPDFIUM2:
            pdf = pdfium.PdfDocument(file_path)
            total_pages = len(pdf)
            if total_pages == 0:
                return ""

            def extract_page(i):
                page = pdf[i]
                text = page.get_textpage().get_text_range() or ""
                if (not text.strip() or len(text) < 100) and force_ocr and 'pytesseract' in sys.modules:
                    logger.info("Falling back to OCR for page %d", i + 1)
                    bitmap = page.render(scale=2).to_pil()
                    text = pytesseract.image_to_string(bitmap, lang="eng")
                return (i, f"=== Page {i + 1} ===\n{text.strip()}")

            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = [executor.submit(extract_page, i) for i in range(total_pages)]
                for future in as_completed(futures):
                    page_num, text = future.result()
                    text_chunks.append((page_num, text))
                    logger.debug("Page %d extracted: %s...", page_num + 1, text[:50])
                    if progress_callback:
                        progress_callback(page_num + 1, total_pages)

            text_chunks.sort(key=lambda x: x[0])
            extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())
            pdf.close()
        else:
            with pdfplumber.open(file_path) as pdf:
                total_pages = len(pdf.pages)
                if total_pages == 0:
                    return ""

                for i, page in enumerate(pdf.pages):
                    text = page.extract_text() or ""
                    text_chunks.append((i, f"=== Page {i + 1} ===\n{text.strip()}"))
                    logger.debug("Page %d extracted: %s...", i + 1, text[:50])
                    if progress_callback:
                        progress_callback(i + 1, total_pages)

            extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())

        logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text))
        if len(extracted_text) < 1000 and not force_ocr and HAS_PYPDFIUM2 and 'pytesseract' in sys.modules:
            logger.info("Text too short, retrying with OCR")
            return await extract_all_pages_async(file_path, progress_callback, force_ocr=True)
        return extracted_text
    except Exception as e:
        logger.error("PDF processing error: %s", e)
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
    try:
        file_h = file_hash(file_path)
        cache_key = f"{file_h}_{file_type}"
        if cache_key in cache:
            logger.info("Using cached extraction for %s", file_path)
            return cache[cache_key]

        if file_type == "pdf":
            text = asyncio.run(extract_all_pages_async(file_path, progress_callback, force_ocr=False))
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})

        cache[cache_key] = result
        logger.info("Cached extraction for %s, size: %d bytes", file_path, len(result))
        return result
    except Exception as e:
        logger.error("Error processing %s: %s", os.path.basename(file_path), e)
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
    except Exception as e:
        logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    text = text.replace("[", "").replace("]", "").replace("None", "")
    text = text.replace("\n\n\n", "\n\n")
    sections = {}
    current_section = None
    seen_lines = set()
    for line in text.splitlines():
        line = line.strip()
        if not line or line in seen_lines:
            continue
        seen_lines.add(line)
        section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
        if section_match:
            current_section = section_match.group(1)
            sections.setdefault(current_section, [])
            continue
        if current_section and line.startswith("- "):
            sections[current_section].append(line)
    cleaned = [f"### {heading}\n" + "\n".join(findings) for heading, findings in sections.items() if findings]
    result = "\n\n".join(cleaned).strip()
    logger.debug("Cleaned response length: %d chars", len(result))
    return result or "No oversights identified"

def summarize_findings(all_responses: List[str]) -> str:
    combined_response = "\n\n".join(all_responses)
    if not combined_response or all("No oversights identified" in resp.lower() for resp in all_responses):
        return "### Comprehensive Clinical Oversight Summary\nNo critical oversights were identified across the provided patient records after thorough analysis."

    sections = {
        "Missed Diagnoses": [],
        "Medication Conflicts": [],
        "Incomplete Assessments": [],
        "Urgent Follow-up": []
    }
    current_section = None
    seen_findings = set()
    for line in combined_response.splitlines():
        line = line.strip()
        if not line:
            continue
        section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
        if section_match:
            current_section = section_match.group(1)
            continue
        if current_section and line.startswith("- ") and line not in seen_findings:
            sections[current_section].append(line)
            seen_findings.add(line)

    summary_lines = []
    for heading, findings in sections.items():
        if findings:
            summary_lines.append(f"### {heading}")
            for finding in findings:
                summary_lines.append(f"{finding}\n  - **Risks**: Potential adverse outcomes if not addressed.\n  - **Recommendation**: Immediate clinical review and follow-up.")

    result = "### Comprehensive Clinical Oversight Summary\n" + "\n".join(summary_lines) if summary_lines else "### Comprehensive Clinical Oversight Summary\nNo critical oversights identified."
    logger.debug("Summary length: %d chars", len(result))
    return result

def init_agent():
    logger.info("Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        enable_rag=False,
        init_rag_num=0,
        step_rag_num=0,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages", visible=False)
        final_summary = gr.Markdown(label="Comprehensive Clinical Oversight Summary")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")
        progress_bar = gr.Progress()

        prompt_template = """
Analyze the patient record excerpt for clinical oversights. Provide a detailed, evidence-based summary in markdown with findings grouped under headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, Urgent Follow-up. For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No oversights identified" once.

Patient Record Excerpt:
{chunk}
"""

        async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
            history.append({"role": "user", "content": message})
            yield history, None, ""

            extracted = ""
            file_hash_value = ""
            if files:
                def update_extraction_progress(current, total):
                    progress(current / total, desc=f"Extracting text... Page {current}/{total}")
                    return history, None, ""

                futures = [convert_file_to_json(f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
                results = [sanitize_utf8(future) for future in futures]
                extracted = "\n".join(results)
                file_hash_value = file_hash(files[0].name) if files else ""

                history.append({"role": "assistant", "content": "✅ Text extraction complete."})
                yield history, None, ""
                logger.info("Extracted text length: %d chars", len(extracted))

            chunk_size = 3000
            chunks = [extracted[i:i + chunk_size] for i in range(0, max(len(extracted), 1), chunk_size)] or [""]
            logger.info("Created %d chunks", len(chunks))
            for i, chunk in enumerate(chunks):
                logger.debug("Chunk %d content: %s...", i + 1, chunk[:100])
            all_responses = []
            batch_size = 2

            try:
                for batch_idx in range(0, len(chunks), batch_size):
                    batch_chunks = chunks[batch_idx:batch_idx + batch_size]
                    batch_prompts = [prompt_template.format(chunk=chunk[:2000]) for chunk in batch_chunks]
                    batch_responses = []

                    progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")

                    async def process_chunk(prompt):
                        chunk_response = ""
                        raw_outputs = []
                        for chunk_output in agent.run_gradio_chat(
                            message=prompt, history=[], temperature=0.2, max_new_tokens=512, max_token=1024, call_agent=False, conversation=[]
                        ):
                            if chunk_output is None:
                                continue
                            if isinstance(chunk_output, list):
                                for m in chunk_output:
                                    if hasattr(m, 'content') and m.content:
                                        raw_outputs.append(m.content)
                                        cleaned = clean_response(m.content)
                                        chunk_response += cleaned + "\n\n"
                            elif isinstance(chunk_output, str) and chunk_output.strip():
                                raw_outputs.append(chunk_output)
                                cleaned = clean_response(chunk_output)
                                chunk_response += cleaned + "\n\n"
                        logger.debug("Raw outputs: %s", raw_outputs[:100])
                        logger.debug("Chunk response length: %d chars", len(chunk_response))
                        return chunk_response

                    futures = [process_chunk(prompt) for prompt in batch_prompts]
                    batch_responses = await asyncio.gather(*futures)
                    all_responses.extend([resp.strip() for resp in batch_responses if resp.strip()])
                    torch.cuda.empty_cache()
                    gc.collect()

                summary = summarize_findings(all_responses)
                history.append({"role": "assistant", "content": "Analysis complete. See summary below."})
                yield history, None, summary

                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(summary)
                yield history, report_path if report_path and os.path.exists(report_path) else None, summary

            except Exception as e:
                logger.error("Analysis error: %s", e)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None, f"### Comprehensive Clinical Oversight Summary\nError occurred during analysis: {str(e)}"

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(api_open=False).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    finally:
        if torch.distributed.is_initialized():
            torch.distributed.destroy_process_group()