File size: 17,262 Bytes
463c8b4 a6968c2 c9b3ae0 463c8b4 973658c 463c8b4 3fa2049 a6968c2 463c8b4 0456412 c278ebf 6741b3e 5eb9bf1 90e24e0 3fa2049 0456412 6741b3e 0456412 463c8b4 c9b3ae0 a6968c2 463c8b4 a6968c2 463c8b4 a6968c2 463c8b4 eea533f 463c8b4 0456412 a6968c2 41eb6bd a6968c2 41eb6bd a6968c2 3fa2049 cbd84d4 3fa2049 5eb9bf1 3fa2049 5eb9bf1 3fa2049 5eb9bf1 3fa2049 5eb9bf1 3fa2049 5eb9bf1 3fa2049 6741b3e 3fa2049 6741b3e 463c8b4 0456412 463c8b4 90e24e0 463c8b4 a6968c2 0456412 6741b3e 0456412 c9b3ae0 41eb6bd 3fa2049 463c8b4 c9b3ae0 463c8b4 c9b3ae0 a8cd932 463c8b4 41eb6bd 463c8b4 0456412 6741b3e 463c8b4 0456412 463c8b4 0456412 463c8b4 0456412 463c8b4 0456412 3683afe 463c8b4 5eb9bf1 6741b3e 51aebc3 3800ddf 3fa2049 6741b3e 3800ddf 3fa2049 3800ddf 3fa2049 eea533f 51aebc3 6741b3e 51aebc3 5eb9bf1 9277e15 6741b3e 3fa2049 9277e15 3fa2049 6741b3e 9277e15 3fa2049 6741b3e 9277e15 463c8b4 0456412 463c8b4 9277e15 6741b3e 463c8b4 a8cd932 0456412 463c8b4 67dd49b 3fa2049 67dd49b 0456412 67dd49b 0456412 3fa2049 0456412 3fa2049 0456412 6741b3e a8cd932 9277e15 463c8b4 0456412 9277e15 463c8b4 6741b3e 463c8b4 0456412 9277e15 6741b3e 463c8b4 3fa2049 6741b3e 3fa2049 0456412 c0b6a0b a8cd932 0456412 3fa2049 0456412 6741b3e 3fa2049 6741b3e 3fa2049 6741b3e 3fa2049 6741b3e 5eb9bf1 6741b3e 3fa2049 6741b3e 5eb9bf1 3fa2049 6741b3e 3fa2049 6741b3e 0456412 3fa2049 eea533f 463c8b4 eea533f 463c8b4 3fa2049 9277e15 463c8b4 0456412 463c8b4 3fa2049 41eb6bd 9277e15 a6968c2 fe67870 e24be23 0456412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
import asyncio
# Try importing pypdfium2 and pytesseract, fall back to pdfplumber
try:
import pypdfium2 as pdfium
import pytesseract
from PIL import Image
HAS_PYPDFIUM2 = True
except ImportError:
HAS_PYPDFIUM2 = False
import pdfplumber
# Configure logging
logging.basicConfig(level=logging.INFO)
logging.getLogger("pdfminer").setLevel(logging.ERROR)
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
async def extract_all_pages_async(file_path: str, progress_callback=None, force_ocr=False) -> str:
try:
extracted_text = ""
total_pages = 0
text_chunks = []
if HAS_PYPDFIUM2:
pdf = pdfium.PdfDocument(file_path)
total_pages = len(pdf)
if total_pages == 0:
return ""
def extract_page(i):
page = pdf[i]
text = page.get_textpage().get_text_range() or ""
if (not text.strip() or len(text) < 100) and force_ocr and 'pytesseract' in sys.modules:
logger.info("Falling back to OCR for page %d", i + 1)
bitmap = page.render(scale=2).to_pil()
text = pytesseract.image_to_string(bitmap, lang="eng")
return (i, f"=== Page {i + 1} ===\n{text.strip()}")
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(extract_page, i) for i in range(total_pages)]
for future in as_completed(futures):
page_num, text = future.result()
text_chunks.append((page_num, text))
logger.debug("Page %d extracted: %s...", page_num + 1, text[:50])
if progress_callback:
progress_callback(page_num + 1, total_pages)
text_chunks.sort(key=lambda x: x[0])
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())
pdf.close()
else:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
for i, page in enumerate(pdf.pages):
text = page.extract_text() or ""
text_chunks.append((i, f"=== Page {i + 1} ===\n{text.strip()}"))
logger.debug("Page %d extracted: %s...", i + 1, text[:50])
if progress_callback:
progress_callback(i + 1, total_pages)
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())
logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text))
if len(extracted_text) < 1000 and not force_ocr and HAS_PYPDFIUM2 and 'pytesseract' in sys.modules:
logger.info("Text too short, retrying with OCR")
return await extract_all_pages_async(file_path, progress_callback, force_ocr=True)
return extracted_text
except Exception as e:
logger.error("PDF processing error: %s", e)
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
try:
file_h = file_hash(file_path)
cache_key = f"{file_h}_{file_type}"
if cache_key in cache:
logger.info("Using cached extraction for %s", file_path)
return cache[cache_key]
if file_type == "pdf":
text = asyncio.run(extract_all_pages_async(file_path, progress_callback, force_ocr=False))
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
cache[cache_key] = result
logger.info("Cached extraction for %s, size: %d bytes", file_path, len(result))
return result
except Exception as e:
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
except Exception as e:
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = text.replace("[", "").replace("]", "").replace("None", "")
text = text.replace("\n\n\n", "\n\n")
sections = {}
current_section = None
seen_lines = set()
for line in text.splitlines():
line = line.strip()
if not line or line in seen_lines:
continue
seen_lines.add(line)
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
if section_match:
current_section = section_match.group(1)
sections.setdefault(current_section, [])
continue
if current_section and line.startswith("- "):
sections[current_section].append(line)
cleaned = [f"### {heading}\n" + "\n".join(findings) for heading, findings in sections.items() if findings]
result = "\n\n".join(cleaned).strip()
logger.debug("Cleaned response length: %d chars", len(result))
return result or "No oversights identified"
def summarize_findings(all_responses: List[str]) -> str:
combined_response = "\n\n".join(all_responses)
if not combined_response or all("No oversights identified" in resp.lower() for resp in all_responses):
return "### Comprehensive Clinical Oversight Summary\nNo critical oversights were identified across the provided patient records after thorough analysis."
sections = {
"Missed Diagnoses": [],
"Medication Conflicts": [],
"Incomplete Assessments": [],
"Urgent Follow-up": []
}
current_section = None
seen_findings = set()
for line in combined_response.splitlines():
line = line.strip()
if not line:
continue
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
if section_match:
current_section = section_match.group(1)
continue
if current_section and line.startswith("- ") and line not in seen_findings:
sections[current_section].append(line)
seen_findings.add(line)
summary_lines = []
for heading, findings in sections.items():
if findings:
summary_lines.append(f"### {heading}")
for finding in findings:
summary_lines.append(f"{finding}\n - **Risks**: Potential adverse outcomes if not addressed.\n - **Recommendation**: Immediate clinical review and follow-up.")
result = "### Comprehensive Clinical Oversight Summary\n" + "\n".join(summary_lines) if summary_lines else "### Comprehensive Clinical Oversight Summary\nNo critical oversights identified."
logger.debug("Summary length: %d chars", len(result))
return result
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
enable_rag=False,
init_rag_num=0,
step_rag_num=0,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages", visible=False)
final_summary = gr.Markdown(label="Comprehensive Clinical Oversight Summary")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
progress_bar = gr.Progress()
prompt_template = """
Analyze the patient record excerpt for clinical oversights. Provide a detailed, evidence-based summary in markdown with findings grouped under headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, Urgent Follow-up. For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No oversights identified" once.
Patient Record Excerpt:
{chunk}
"""
async def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = ""
file_hash_value = ""
if files:
def update_extraction_progress(current, total):
progress(current / total, desc=f"Extracting text... Page {current}/{total}")
return history, None, ""
futures = [convert_file_to_json(f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
results = [sanitize_utf8(future) for future in futures]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
yield history, None, ""
logger.info("Extracted text length: %d chars", len(extracted))
chunk_size = 3000
chunks = [extracted[i:i + chunk_size] for i in range(0, max(len(extracted), 1), chunk_size)] or [""]
logger.info("Created %d chunks", len(chunks))
for i, chunk in enumerate(chunks):
logger.debug("Chunk %d content: %s...", i + 1, chunk[:100])
all_responses = []
batch_size = 2
try:
for batch_idx in range(0, len(chunks), batch_size):
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
batch_prompts = [prompt_template.format(chunk=chunk[:2000]) for chunk in batch_chunks]
batch_responses = []
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")
async def process_chunk(prompt):
chunk_response = ""
raw_outputs = []
for chunk_output in agent.run_gradio_chat(
message=prompt, history=[], temperature=0.2, max_new_tokens=512, max_token=1024, call_agent=False, conversation=[]
):
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
raw_outputs.append(m.content)
cleaned = clean_response(m.content)
chunk_response += cleaned + "\n\n"
elif isinstance(chunk_output, str) and chunk_output.strip():
raw_outputs.append(chunk_output)
cleaned = clean_response(chunk_output)
chunk_response += cleaned + "\n\n"
logger.debug("Raw outputs: %s", raw_outputs[:100])
logger.debug("Chunk response length: %d chars", len(chunk_response))
return chunk_response
futures = [process_chunk(prompt) for prompt in batch_prompts]
batch_responses = await asyncio.gather(*futures)
all_responses.extend([resp.strip() for resp in batch_responses if resp.strip()])
torch.cuda.empty_cache()
gc.collect()
summary = summarize_findings(all_responses)
history.append({"role": "assistant", "content": "Analysis complete. See summary below."})
yield history, None, summary
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(summary)
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
except Exception as e:
logger.error("Analysis error: %s", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"### Comprehensive Clinical Oversight Summary\nError occurred during analysis: {str(e)}"
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group() |