Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import gradio as gr
|
|
6 |
from typing import List, Dict
|
7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
import hashlib
|
|
|
9 |
|
10 |
# Persistent directories
|
11 |
persistent_dir = "/data/hf_cache"
|
@@ -15,12 +16,6 @@ report_dir = os.path.join(persistent_dir, "reports")
|
|
15 |
for directory in [file_cache_dir, report_dir]:
|
16 |
os.makedirs(directory, exist_ok=True)
|
17 |
|
18 |
-
# Medical keywords for PDF extraction
|
19 |
-
MEDICAL_KEYWORDS = {
|
20 |
-
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
21 |
-
'allergies', 'summary', 'impression', 'findings', 'recommendations'
|
22 |
-
}
|
23 |
-
|
24 |
def sanitize_utf8(text: str) -> str:
|
25 |
"""Sanitize text to handle UTF-8 encoding issues."""
|
26 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
@@ -30,20 +25,19 @@ def file_hash(path: str) -> str:
|
|
30 |
with open(path, "rb") as f:
|
31 |
return hashlib.md5(f.read()).hexdigest()
|
32 |
|
33 |
-
def
|
34 |
-
"""Extract text from
|
35 |
try:
|
36 |
text_chunks = []
|
37 |
with pdfplumber.open(file_path) as pdf:
|
38 |
-
for
|
39 |
page_text = page.extract_text() or ""
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
return f"PDF processing error: {str(e)}"
|
45 |
|
46 |
-
def convert_file_to_text(file_path: str, file_type: str) -> str:
|
47 |
"""Convert supported file types to text, caching results."""
|
48 |
try:
|
49 |
h = file_hash(file_path)
|
@@ -53,28 +47,26 @@ def convert_file_to_text(file_path: str, file_type: str) -> str:
|
|
53 |
return f.read()
|
54 |
|
55 |
if file_type == "pdf":
|
56 |
-
text =
|
57 |
elif file_type == "csv":
|
58 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
59 |
-
skip_blank_lines=
|
60 |
-
text = "
|
61 |
elif file_type in ["xls", "xlsx"]:
|
62 |
-
|
63 |
-
|
64 |
-
except Exception:
|
65 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
66 |
-
text = "\n".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
67 |
else:
|
68 |
-
text =
|
69 |
|
70 |
-
|
71 |
-
|
|
|
72 |
return text
|
73 |
-
except Exception
|
74 |
-
return
|
75 |
|
76 |
def parse_analysis_response(raw_response: str) -> Dict[str, List[str]]:
|
77 |
-
"""Parse raw analysis response into structured sections."""
|
78 |
sections = {
|
79 |
"Missed Diagnoses": [],
|
80 |
"Medication Conflicts": [],
|
@@ -82,110 +74,134 @@ def parse_analysis_response(raw_response: str) -> Dict[str, List[str]]:
|
|
82 |
"Urgent Follow-up": []
|
83 |
}
|
84 |
current_section = None
|
85 |
-
|
|
|
86 |
|
87 |
-
for line in
|
88 |
line = line.strip()
|
89 |
if not line:
|
90 |
continue
|
91 |
-
if
|
92 |
-
current_section =
|
93 |
-
elif
|
94 |
-
current_section = "Medication Conflicts"
|
95 |
-
elif line.startswith("Incomplete Assessments"):
|
96 |
-
current_section = "Incomplete Assessments"
|
97 |
-
elif line.startswith("Urgent Follow-up"):
|
98 |
-
current_section = "Urgent Follow-up"
|
99 |
-
elif current_section and line.startswith("-"):
|
100 |
sections[current_section].append(line)
|
101 |
|
102 |
return sections
|
103 |
|
104 |
-
def analyze_medical_records(extracted_text: str) -> str:
|
105 |
-
"""Analyze medical records
|
106 |
-
#
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
Missed Diagnoses:
|
110 |
- Undiagnosed hypertension despite elevated BP readings.
|
111 |
- Family history of diabetes not evaluated for prediabetes risk.
|
112 |
|
113 |
Medication Conflicts:
|
114 |
-
-
|
115 |
-
- Beta-blocker prescribed without assessing asthma history, risking bronchospasm.
|
116 |
|
117 |
Incomplete Assessments:
|
118 |
-
- No cardiac stress test despite
|
119 |
-
- Social history lacks documentation of substance use or living conditions.
|
120 |
|
121 |
Urgent Follow-up:
|
122 |
-
- Abnormal ECG
|
123 |
-
- Elevated liver enzymes not addressed, needing hepatology consultation.
|
124 |
"""
|
125 |
|
126 |
-
#
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
#
|
130 |
response = ["### Clinical Oversight Analysis\n"]
|
131 |
has_findings = False
|
132 |
-
for section, items in
|
133 |
response.append(f"#### {section}")
|
134 |
if items:
|
135 |
-
response.extend(items)
|
136 |
has_findings = True
|
137 |
else:
|
138 |
response.append("- None identified.")
|
139 |
-
response.append("")
|
140 |
|
141 |
response.append("### Summary")
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
summary = "No significant clinical oversights were identified in the provided records. Continue monitoring and ensure complete documentation."
|
146 |
response.append(summary)
|
147 |
|
148 |
-
|
149 |
|
150 |
-
def create_ui():
|
151 |
"""Create Gradio UI for clinical oversight analysis."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
153 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
154 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
155 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
156 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
157 |
send_btn = gr.Button("Analyze", variant="primary")
|
158 |
-
download_output = gr.File(label="Download
|
159 |
-
|
160 |
-
def analyze(message: str, history: List[dict], files: List):
|
161 |
-
"""Handle analysis of medical records and update UI."""
|
162 |
-
history.append({"role": "user", "content": message})
|
163 |
-
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
|
164 |
-
yield history, None
|
165 |
-
|
166 |
-
extracted_text = ""
|
167 |
-
file_hash_value = ""
|
168 |
-
if files:
|
169 |
-
with ThreadPoolExecutor(max_workers=6) as executor:
|
170 |
-
futures = [executor.submit(convert_file_to_text, f.name, f.name.split(".")[-1].lower()) for f in files]
|
171 |
-
extracted_text = "\n".join(sanitize_utf8(f.result()) for f in as_completed(futures))
|
172 |
-
file_hash_value = file_hash(files[0].name) if files else ""
|
173 |
-
|
174 |
-
# Analyze extracted text
|
175 |
-
history.pop() # Remove "Analyzing..." message
|
176 |
-
try:
|
177 |
-
response = analyze_medical_records(extracted_text)
|
178 |
-
history.append({"role": "assistant", "content": response})
|
179 |
-
|
180 |
-
# Generate report file
|
181 |
-
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
182 |
-
if report_path:
|
183 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
184 |
-
f.write(response)
|
185 |
-
yield history, report_path if report_path and os.path.exists(report_path) else None
|
186 |
-
except Exception as e:
|
187 |
-
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
188 |
-
yield history, None
|
189 |
|
190 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
191 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
@@ -194,7 +210,7 @@ def create_ui():
|
|
194 |
if __name__ == "__main__":
|
195 |
print("🚀 Launching app...")
|
196 |
try:
|
197 |
-
demo = create_ui()
|
198 |
demo.queue(api_open=False).launch(
|
199 |
server_name="0.0.0.0",
|
200 |
server_port=7860,
|
|
|
6 |
from typing import List, Dict
|
7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
import hashlib
|
9 |
+
import asyncio
|
10 |
|
11 |
# Persistent directories
|
12 |
persistent_dir = "/data/hf_cache"
|
|
|
16 |
for directory in [file_cache_dir, report_dir]:
|
17 |
os.makedirs(directory, exist_ok=True)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def sanitize_utf8(text: str) -> str:
|
20 |
"""Sanitize text to handle UTF-8 encoding issues."""
|
21 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
|
|
25 |
with open(path, "rb") as f:
|
26 |
return hashlib.md5(f.read()).hexdigest()
|
27 |
|
28 |
+
def extract_all_pages(file_path: str) -> str:
|
29 |
+
"""Extract text from all pages of a PDF."""
|
30 |
try:
|
31 |
text_chunks = []
|
32 |
with pdfplumber.open(file_path) as pdf:
|
33 |
+
for page in pdf.pages:
|
34 |
page_text = page.extract_text() or ""
|
35 |
+
text_chunks.append(page_text.strip())
|
36 |
+
return "\n".join(text_chunks)
|
37 |
+
except Exception:
|
38 |
+
return ""
|
|
|
39 |
|
40 |
+
async def convert_file_to_text(file_path: str, file_type: str) -> str:
|
41 |
"""Convert supported file types to text, caching results."""
|
42 |
try:
|
43 |
h = file_hash(file_path)
|
|
|
47 |
return f.read()
|
48 |
|
49 |
if file_type == "pdf":
|
50 |
+
text = extract_all_pages(file_path)
|
51 |
elif file_type == "csv":
|
52 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
53 |
+
skip_blank_lines=True, on_bad_lines="skip")
|
54 |
+
text = " ".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
55 |
elif file_type in ["xls", "xlsx"]:
|
56 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
57 |
+
text = " ".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
|
|
|
|
|
|
58 |
else:
|
59 |
+
text = ""
|
60 |
|
61 |
+
if text:
|
62 |
+
with open(cache_path, "w", encoding="utf-8") as f:
|
63 |
+
f.write(text)
|
64 |
return text
|
65 |
+
except Exception:
|
66 |
+
return ""
|
67 |
|
68 |
def parse_analysis_response(raw_response: str) -> Dict[str, List[str]]:
|
69 |
+
"""Parse raw analysis response into structured sections using regex."""
|
70 |
sections = {
|
71 |
"Missed Diagnoses": [],
|
72 |
"Medication Conflicts": [],
|
|
|
74 |
"Urgent Follow-up": []
|
75 |
}
|
76 |
current_section = None
|
77 |
+
section_pattern = re.compile(r"^(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up):$", re.MULTILINE)
|
78 |
+
item_pattern = re.compile(r"^- .+$", re.MULTILINE)
|
79 |
|
80 |
+
for line in raw_response.splitlines():
|
81 |
line = line.strip()
|
82 |
if not line:
|
83 |
continue
|
84 |
+
if section_pattern.match(line):
|
85 |
+
current_section = line[:-1]
|
86 |
+
elif current_section and item_pattern.match(line):
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
sections[current_section].append(line)
|
88 |
|
89 |
return sections
|
90 |
|
91 |
+
async def analyze_medical_records(extracted_text: str) -> str:
|
92 |
+
"""Analyze medical records and stream structured response."""
|
93 |
+
# Split text into chunks to handle large inputs
|
94 |
+
chunk_size = 10000
|
95 |
+
chunks = [extracted_text[i:i + chunk_size] for i in range(0, len(extracted_text), chunk_size)]
|
96 |
+
|
97 |
+
# Placeholder for analysis (replace with model or rule-based logic)
|
98 |
+
# Simulate chunked analysis with sample response
|
99 |
+
raw_response_template = """
|
100 |
Missed Diagnoses:
|
101 |
- Undiagnosed hypertension despite elevated BP readings.
|
102 |
- Family history of diabetes not evaluated for prediabetes risk.
|
103 |
|
104 |
Medication Conflicts:
|
105 |
+
- SSRIs and NSAIDs detected, increasing GI bleeding risk.
|
|
|
106 |
|
107 |
Incomplete Assessments:
|
108 |
+
- No cardiac stress test despite chest pain.
|
|
|
109 |
|
110 |
Urgent Follow-up:
|
111 |
+
- Abnormal ECG requires cardiology referral.
|
|
|
112 |
"""
|
113 |
|
114 |
+
# Aggregate findings across chunks
|
115 |
+
all_sections = {
|
116 |
+
"Missed Diagnoses": set(),
|
117 |
+
"Medication Conflicts": set(),
|
118 |
+
"Incomplete Assessments": set(),
|
119 |
+
"Urgent Follow-up": set()
|
120 |
+
}
|
121 |
+
|
122 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
123 |
+
# Simulate analysis per chunk (replace with real logic)
|
124 |
+
raw_response = raw_response_template # In real use, analyze chunk
|
125 |
+
|
126 |
+
# Parse chunk response
|
127 |
+
parsed = parse_analysis_response(raw_response)
|
128 |
+
for section, items in parsed.items():
|
129 |
+
all_sections[section].update(items)
|
130 |
+
|
131 |
+
# Stream partial results
|
132 |
+
response = [f"### Clinical Oversight Analysis (Chunk {chunk_idx}/{len(chunks)})\n"]
|
133 |
+
has_findings = False
|
134 |
+
for section, items in all_sections.items():
|
135 |
+
response.append(f"#### {section}")
|
136 |
+
if items:
|
137 |
+
response.extend(sorted(items))
|
138 |
+
has_findings = True
|
139 |
+
else:
|
140 |
+
response.append("- None identified.")
|
141 |
+
response.append("")
|
142 |
+
yield "\n".join(response)
|
143 |
|
144 |
+
# Final response
|
145 |
response = ["### Clinical Oversight Analysis\n"]
|
146 |
has_findings = False
|
147 |
+
for section, items in all_sections.items():
|
148 |
response.append(f"#### {section}")
|
149 |
if items:
|
150 |
+
response.extend(sorted(items))
|
151 |
has_findings = True
|
152 |
else:
|
153 |
response.append("- None identified.")
|
154 |
+
response.append("")
|
155 |
|
156 |
response.append("### Summary")
|
157 |
+
summary = ("The analysis identified potential oversights in diagnosis, medication management, "
|
158 |
+
"assessments, and follow-up needs. Immediate action is recommended.") if has_findings else \
|
159 |
+
"No significant oversights identified. Continue monitoring."
|
|
|
160 |
response.append(summary)
|
161 |
|
162 |
+
yield "\n".join(response)
|
163 |
|
164 |
+
async def create_ui():
|
165 |
"""Create Gradio UI for clinical oversight analysis."""
|
166 |
+
async def analyze(message: str, history: List[dict], files: List):
|
167 |
+
"""Handle analysis and stream results to UI."""
|
168 |
+
history.append({"role": "user", "content": message})
|
169 |
+
history.append({"role": "assistant", "content": "⏳ Analyzing..."})
|
170 |
+
yield history, None
|
171 |
+
|
172 |
+
extracted_text = ""
|
173 |
+
file_hash_value = ""
|
174 |
+
if files:
|
175 |
+
tasks = [convert_file_to_text(f.name, f.name.split(".")[-1].lower()) for f in files]
|
176 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
177 |
+
extracted_text = "\n".join(sanitize_utf8(r) for r in results if isinstance(r, str))
|
178 |
+
file_hash_value = file_hash(files[0].name) if files else ""
|
179 |
+
|
180 |
+
history.pop() # Remove "Analyzing..."
|
181 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
182 |
+
full_response = []
|
183 |
+
|
184 |
+
try:
|
185 |
+
async for partial_response in analyze_medical_records(extracted_text):
|
186 |
+
full_response = partial_response.splitlines()
|
187 |
+
history.append({"role": "assistant", "content": partial_response})
|
188 |
+
yield history, None
|
189 |
+
|
190 |
+
if report_path:
|
191 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
192 |
+
f.write("\n".join(full_response))
|
193 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None
|
194 |
+
except Exception as e:
|
195 |
+
history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
|
196 |
+
yield history, None
|
197 |
+
|
198 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
199 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
200 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
201 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
202 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
203 |
send_btn = gr.Button("Analyze", variant="primary")
|
204 |
+
download_output = gr.File(label="Download Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
207 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
|
|
210 |
if __name__ == "__main__":
|
211 |
print("🚀 Launching app...")
|
212 |
try:
|
213 |
+
demo = asyncio.run(create_ui())
|
214 |
demo.queue(api_open=False).launch(
|
215 |
server_name="0.0.0.0",
|
216 |
server_port=7860,
|