Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,37 @@
|
|
1 |
-
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
-
import
|
6 |
import gradio as gr
|
7 |
-
from typing import List
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
-
import shutil
|
11 |
-
import re
|
12 |
-
import psutil
|
13 |
-
import subprocess
|
14 |
|
15 |
-
# Persistent
|
16 |
persistent_dir = "/data/hf_cache"
|
17 |
os.makedirs(persistent_dir, exist_ok=True)
|
18 |
-
|
19 |
-
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
20 |
-
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
21 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
22 |
report_dir = os.path.join(persistent_dir, "reports")
|
23 |
-
|
24 |
-
|
25 |
-
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
26 |
os.makedirs(directory, exist_ok=True)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
35 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
36 |
-
sys.path.insert(0, src_path)
|
37 |
-
|
38 |
-
from txagent.txagent import TxAgent
|
39 |
-
|
40 |
-
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
41 |
-
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
|
42 |
|
43 |
def sanitize_utf8(text: str) -> str:
|
|
|
44 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
45 |
|
46 |
def file_hash(path: str) -> str:
|
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
50 |
def extract_priority_pages(file_path: str) -> str:
|
|
|
51 |
try:
|
52 |
text_chunks = []
|
53 |
with pdfplumber.open(file_path) as pdf:
|
@@ -59,82 +43,112 @@ def extract_priority_pages(file_path: str) -> str:
|
|
59 |
except Exception as e:
|
60 |
return f"PDF processing error: {str(e)}"
|
61 |
|
62 |
-
def
|
|
|
63 |
try:
|
64 |
h = file_hash(file_path)
|
65 |
-
cache_path = os.path.join(file_cache_dir, f"{h}.
|
66 |
if os.path.exists(cache_path):
|
67 |
with open(cache_path, "r", encoding="utf-8") as f:
|
68 |
return f.read()
|
69 |
|
70 |
if file_type == "pdf":
|
71 |
text = extract_priority_pages(file_path)
|
72 |
-
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
73 |
elif file_type == "csv":
|
74 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
75 |
skip_blank_lines=False, on_bad_lines="skip")
|
76 |
-
|
77 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
78 |
elif file_type in ["xls", "xlsx"]:
|
79 |
try:
|
80 |
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
81 |
except Exception:
|
82 |
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
83 |
-
|
84 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
85 |
else:
|
86 |
-
|
87 |
-
with open(cache_path, "w", encoding="utf-8") as f:
|
88 |
-
f.write(result)
|
89 |
-
return result
|
90 |
-
except Exception as e:
|
91 |
-
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
mem = psutil.virtual_memory()
|
97 |
-
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
98 |
-
result = subprocess.run(
|
99 |
-
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
100 |
-
capture_output=True, text=True
|
101 |
-
)
|
102 |
-
if result.returncode == 0:
|
103 |
-
used, total, util = result.stdout.strip().split(", ")
|
104 |
-
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
105 |
except Exception as e:
|
106 |
-
|
107 |
-
|
108 |
-
def
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
139 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
140 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
@@ -144,106 +158,32 @@ def create_ui(agent):
|
|
144 |
download_output = gr.File(label="Download Full Report")
|
145 |
|
146 |
def analyze(message: str, history: List[dict], files: List):
|
|
|
147 |
history.append({"role": "user", "content": message})
|
148 |
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
|
149 |
yield history, None
|
150 |
|
151 |
-
|
152 |
file_hash_value = ""
|
153 |
if files:
|
154 |
with ThreadPoolExecutor(max_workers=6) as executor:
|
155 |
-
futures = [executor.submit(
|
156 |
-
|
157 |
-
extracted = "\n".join(results)
|
158 |
file_hash_value = file_hash(files[0].name) if files else ""
|
159 |
|
160 |
-
#
|
161 |
-
|
162 |
-
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
163 |
-
combined_response = ""
|
164 |
-
|
165 |
-
prompt_template = f"""
|
166 |
-
Analyze the medical records for clinical oversights. Provide a concise, evidence-based summary under these headings:
|
167 |
-
1. **Missed Diagnoses**:
|
168 |
-
- Identify inconsistencies in history, symptoms, or tests.
|
169 |
-
- Consider psychiatric, neurological, infectious, autoimmune, genetic conditions, family history, trauma, and developmental factors.
|
170 |
-
2. **Medication Conflicts**:
|
171 |
-
- Check for contraindications, interactions, or unjustified off-label use.
|
172 |
-
- Assess if medications worsen diagnoses or cause adverse effects.
|
173 |
-
3. **Incomplete Assessments**:
|
174 |
-
- Note missing or superficial cognitive, psychiatric, social, or family assessments.
|
175 |
-
- Highlight gaps in medical history, substance use, or lab/imaging documentation.
|
176 |
-
4. **Urgent Follow-up**:
|
177 |
-
- Flag abnormal lab results, imaging, behaviors, or legal history needing immediate reassessment or referral.
|
178 |
-
Medical Records (Chunk {0} of {1}):
|
179 |
-
{{chunk}}
|
180 |
-
Begin analysis:
|
181 |
-
"""
|
182 |
-
|
183 |
try:
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Process each chunk and stream results in real-time
|
188 |
-
for chunk_idx, chunk in enumerate(chunks, 1):
|
189 |
-
# Update UI with progress
|
190 |
-
history.append({"role": "assistant", "content": f"🔄 Processing Chunk {chunk_idx} of {len(chunks)}..."})
|
191 |
-
yield history, None
|
192 |
-
|
193 |
-
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk)
|
194 |
-
chunk_response = ""
|
195 |
-
for chunk_output in agent.run_gradio_chat(
|
196 |
-
message=prompt,
|
197 |
-
history=[],
|
198 |
-
temperature=0.2,
|
199 |
-
max_new_tokens=1024,
|
200 |
-
max_token=4096,
|
201 |
-
call_agent=False,
|
202 |
-
conversation=[],
|
203 |
-
):
|
204 |
-
if chunk_output is None:
|
205 |
-
continue
|
206 |
-
if isinstance(chunk_output, list):
|
207 |
-
for m in chunk_output:
|
208 |
-
if hasattr(m, 'content') and m.content:
|
209 |
-
cleaned = clean_response(m.content)
|
210 |
-
if cleaned:
|
211 |
-
chunk_response += cleaned + "\n"
|
212 |
-
# Update UI with partial response
|
213 |
-
if history[-1]["content"].startswith("🔄"):
|
214 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
215 |
-
else:
|
216 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
217 |
-
yield history, None
|
218 |
-
elif isinstance(chunk_output, str) and chunk_output.strip():
|
219 |
-
cleaned = clean_response(chunk_output)
|
220 |
-
if cleaned:
|
221 |
-
chunk_response += cleaned + "\n"
|
222 |
-
# Update UI with partial response
|
223 |
-
if history[-1]["content"].startswith("🔄"):
|
224 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
225 |
-
else:
|
226 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
227 |
-
yield history, None
|
228 |
-
|
229 |
-
# Append completed chunk response to combined response
|
230 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
231 |
-
|
232 |
-
# Finalize UI with complete response
|
233 |
-
if combined_response:
|
234 |
-
history[-1]["content"] = combined_response.strip()
|
235 |
-
else:
|
236 |
-
history.append({"role": "assistant", "content": "No oversights identified."})
|
237 |
|
238 |
# Generate report file
|
239 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
240 |
if report_path:
|
241 |
with open(report_path, "w", encoding="utf-8") as f:
|
242 |
-
f.write(
|
243 |
yield history, report_path if report_path and os.path.exists(report_path) else None
|
244 |
-
|
245 |
except Exception as e:
|
246 |
-
print("🚨 ERROR:", e)
|
247 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
248 |
yield history, None
|
249 |
|
@@ -253,12 +193,14 @@ Begin analysis:
|
|
253 |
|
254 |
if __name__ == "__main__":
|
255 |
print("🚀 Launching app...")
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import pdfplumber
|
4 |
+
import re
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Dict
|
7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
import hashlib
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Persistent directories
|
11 |
persistent_dir = "/data/hf_cache"
|
12 |
os.makedirs(persistent_dir, exist_ok=True)
|
|
|
|
|
|
|
13 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
14 |
report_dir = os.path.join(persistent_dir, "reports")
|
15 |
+
for directory in [file_cache_dir, report_dir]:
|
|
|
|
|
16 |
os.makedirs(directory, exist_ok=True)
|
17 |
|
18 |
+
# Medical keywords for PDF extraction
|
19 |
+
MEDICAL_KEYWORDS = {
|
20 |
+
'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
21 |
+
'allergies', 'summary', 'impression', 'findings', 'recommendations'
|
22 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def sanitize_utf8(text: str) -> str:
|
25 |
+
"""Sanitize text to handle UTF-8 encoding issues."""
|
26 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
27 |
|
28 |
def file_hash(path: str) -> str:
|
29 |
+
"""Generate MD5 hash of a file."""
|
30 |
with open(path, "rb") as f:
|
31 |
return hashlib.md5(f.read()).hexdigest()
|
32 |
|
33 |
def extract_priority_pages(file_path: str) -> str:
|
34 |
+
"""Extract text from PDF pages, prioritizing those with medical keywords."""
|
35 |
try:
|
36 |
text_chunks = []
|
37 |
with pdfplumber.open(file_path) as pdf:
|
|
|
43 |
except Exception as e:
|
44 |
return f"PDF processing error: {str(e)}"
|
45 |
|
46 |
+
def convert_file_to_text(file_path: str, file_type: str) -> str:
|
47 |
+
"""Convert supported file types to text, caching results."""
|
48 |
try:
|
49 |
h = file_hash(file_path)
|
50 |
+
cache_path = os.path.join(file_cache_dir, f"{h}.txt")
|
51 |
if os.path.exists(cache_path):
|
52 |
with open(cache_path, "r", encoding="utf-8") as f:
|
53 |
return f.read()
|
54 |
|
55 |
if file_type == "pdf":
|
56 |
text = extract_priority_pages(file_path)
|
|
|
57 |
elif file_type == "csv":
|
58 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
59 |
skip_blank_lines=False, on_bad_lines="skip")
|
60 |
+
text = "\n".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
|
|
61 |
elif file_type in ["xls", "xlsx"]:
|
62 |
try:
|
63 |
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
64 |
except Exception:
|
65 |
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
66 |
+
text = "\n".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
|
|
67 |
else:
|
68 |
+
text = f"Unsupported file type: {file_type}"
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
with open(cache_path, "w", encoding="utf-8") as f:
|
71 |
+
f.write(text)
|
72 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
except Exception as e:
|
74 |
+
return f"Error processing {os.path.basename(file_path)}: {str(e)}"
|
75 |
+
|
76 |
+
def parse_analysis_response(raw_response: str) -> Dict[str, List[str]]:
|
77 |
+
"""Parse raw analysis response into structured sections."""
|
78 |
+
sections = {
|
79 |
+
"Missed Diagnoses": [],
|
80 |
+
"Medication Conflicts": [],
|
81 |
+
"Incomplete Assessments": [],
|
82 |
+
"Urgent Follow-up": []
|
83 |
+
}
|
84 |
+
current_section = None
|
85 |
+
lines = raw_response.split("\n")
|
86 |
+
|
87 |
+
for line in lines:
|
88 |
+
line = line.strip()
|
89 |
+
if not line:
|
90 |
+
continue
|
91 |
+
if line.startswith("Missed Diagnoses"):
|
92 |
+
current_section = "Missed Diagnoses"
|
93 |
+
elif line.startswith("Medication Conflicts"):
|
94 |
+
current_section = "Medication Conflicts"
|
95 |
+
elif line.startswith("Incomplete Assessments"):
|
96 |
+
current_section = "Incomplete Assessments"
|
97 |
+
elif line.startswith("Urgent Follow-up"):
|
98 |
+
current_section = "Urgent Follow-up"
|
99 |
+
elif current_section and line.startswith("-"):
|
100 |
+
sections[current_section].append(line)
|
101 |
+
|
102 |
+
return sections
|
103 |
+
|
104 |
+
def analyze_medical_records(extracted_text: str) -> str:
|
105 |
+
"""Analyze medical records for clinical oversights and return structured response."""
|
106 |
+
# Placeholder for dynamic analysis (replace with actual model or rule-based logic)
|
107 |
+
# Example response to demonstrate flexibility with varying content
|
108 |
+
raw_response = """
|
109 |
+
Missed Diagnoses:
|
110 |
+
- Undiagnosed hypertension despite elevated BP readings.
|
111 |
+
- Family history of diabetes not evaluated for prediabetes risk.
|
112 |
+
|
113 |
+
Medication Conflicts:
|
114 |
+
- Concurrent use of SSRIs and NSAIDs detected, increasing risk of gastrointestinal bleeding.
|
115 |
+
- Beta-blocker prescribed without assessing asthma history, risking bronchospasm.
|
116 |
+
|
117 |
+
Incomplete Assessments:
|
118 |
+
- No cardiac stress test despite reported chest pain.
|
119 |
+
- Social history lacks documentation of substance use or living conditions.
|
120 |
+
|
121 |
+
Urgent Follow-up:
|
122 |
+
- Abnormal ECG results require immediate cardiology referral.
|
123 |
+
- Elevated liver enzymes not addressed, needing hepatology consultation.
|
124 |
+
"""
|
125 |
+
|
126 |
+
# Parse the raw response into sections
|
127 |
+
parsed = parse_analysis_response(raw_response)
|
128 |
+
|
129 |
+
# Format the response
|
130 |
+
response = ["### Clinical Oversight Analysis\n"]
|
131 |
+
has_findings = False
|
132 |
+
for section, items in parsed.items():
|
133 |
+
response.append(f"#### {section}")
|
134 |
+
if items:
|
135 |
+
response.extend(items)
|
136 |
+
has_findings = True
|
137 |
+
else:
|
138 |
+
response.append("- None identified.")
|
139 |
+
response.append("") # Add newline for readability
|
140 |
+
|
141 |
+
response.append("### Summary")
|
142 |
+
if has_findings:
|
143 |
+
summary = "The analysis identified potential oversights in diagnosis, medication management, assessments, and follow-up needs. Immediate action is recommended to address critical findings and ensure comprehensive patient care."
|
144 |
+
else:
|
145 |
+
summary = "No significant clinical oversights were identified in the provided records. Continue monitoring and ensure complete documentation."
|
146 |
+
response.append(summary)
|
147 |
+
|
148 |
+
return "\n".join(response)
|
149 |
+
|
150 |
+
def create_ui():
|
151 |
+
"""Create Gradio UI for clinical oversight analysis."""
|
152 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
153 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
154 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
|
|
158 |
download_output = gr.File(label="Download Full Report")
|
159 |
|
160 |
def analyze(message: str, history: List[dict], files: List):
|
161 |
+
"""Handle analysis of medical records and update UI."""
|
162 |
history.append({"role": "user", "content": message})
|
163 |
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
|
164 |
yield history, None
|
165 |
|
166 |
+
extracted_text = ""
|
167 |
file_hash_value = ""
|
168 |
if files:
|
169 |
with ThreadPoolExecutor(max_workers=6) as executor:
|
170 |
+
futures = [executor.submit(convert_file_to_text, f.name, f.name.split(".")[-1].lower()) for f in files]
|
171 |
+
extracted_text = "\n".join(sanitize_utf8(f.result()) for f in as_completed(futures))
|
|
|
172 |
file_hash_value = file_hash(files[0].name) if files else ""
|
173 |
|
174 |
+
# Analyze extracted text
|
175 |
+
history.pop() # Remove "Analyzing..." message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
try:
|
177 |
+
response = analyze_medical_records(extracted_text)
|
178 |
+
history.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
# Generate report file
|
181 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
182 |
if report_path:
|
183 |
with open(report_path, "w", encoding="utf-8") as f:
|
184 |
+
f.write(response)
|
185 |
yield history, report_path if report_path and os.path.exists(report_path) else None
|
|
|
186 |
except Exception as e:
|
|
|
187 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
188 |
yield history, None
|
189 |
|
|
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
print("🚀 Launching app...")
|
196 |
+
try:
|
197 |
+
demo = create_ui()
|
198 |
+
demo.queue(api_open=False).launch(
|
199 |
+
server_name="0.0.0.0",
|
200 |
+
server_port=7860,
|
201 |
+
show_error=True,
|
202 |
+
allowed_paths=[report_dir],
|
203 |
+
share=False
|
204 |
+
)
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Failed to launch app: {str(e)}")
|