Update app.py
Browse files
app.py
CHANGED
@@ -4,27 +4,13 @@ import pandas as pd
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
-
from typing import List
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
12 |
import psutil
|
13 |
import subprocess
|
14 |
-
import logging
|
15 |
-
import traceback
|
16 |
-
from datetime import datetime
|
17 |
-
|
18 |
-
# Configure logging
|
19 |
-
logging.basicConfig(
|
20 |
-
level=logging.INFO,
|
21 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
22 |
-
handlers=[
|
23 |
-
logging.StreamHandler(),
|
24 |
-
logging.FileHandler('clinical_oversight.log')
|
25 |
-
]
|
26 |
-
)
|
27 |
-
logger = logging.getLogger(__name__)
|
28 |
|
29 |
# Persistent directory
|
30 |
persistent_dir = "/data/hf_cache"
|
@@ -55,429 +41,169 @@ MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
|
55 |
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
|
56 |
|
57 |
def sanitize_utf8(text: str) -> str:
|
58 |
-
|
59 |
-
try:
|
60 |
-
return text.encode("utf-8", "ignore").decode("utf-8")
|
61 |
-
except Exception as e:
|
62 |
-
logger.error(f"UTF-8 sanitization failed: {str(e)}")
|
63 |
-
return ""
|
64 |
|
65 |
def file_hash(path: str) -> str:
|
66 |
-
""
|
67 |
-
|
68 |
-
with open(path, "rb") as f:
|
69 |
-
return hashlib.md5(f.read()).hexdigest()
|
70 |
-
except Exception as e:
|
71 |
-
logger.error(f"File hash generation failed for {path}: {str(e)}")
|
72 |
-
return ""
|
73 |
|
74 |
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
|
75 |
-
"""Extract pages from PDF with priority given to pages containing medical keywords."""
|
76 |
try:
|
77 |
text_chunks = []
|
78 |
-
logger.info(f"Extracting pages from {file_path}")
|
79 |
-
|
80 |
with pdfplumber.open(file_path) as pdf:
|
81 |
-
# Always extract first 3 pages
|
82 |
for i, page in enumerate(pdf.pages[:3]):
|
83 |
-
|
84 |
-
|
85 |
-
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
86 |
-
except Exception as page_error:
|
87 |
-
logger.warning(f"Error processing page {i+1}: {str(page_error)}")
|
88 |
-
text_chunks.append(f"=== Page {i+1} ===\n[Error extracting content]")
|
89 |
-
|
90 |
-
# Extract remaining pages that contain medical keywords
|
91 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
|
96 |
-
except Exception as page_error:
|
97 |
-
logger.warning(f"Error processing page {i}: {str(page_error)}")
|
98 |
-
|
99 |
return "\n\n".join(text_chunks)
|
100 |
except Exception as e:
|
101 |
-
logger.error(f"PDF processing error for {file_path}: {str(e)}")
|
102 |
return f"PDF processing error: {str(e)}"
|
103 |
|
104 |
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
105 |
-
"""Convert different file types to JSON format with caching."""
|
106 |
try:
|
107 |
h = file_hash(file_path)
|
108 |
-
if not h:
|
109 |
-
return json.dumps({"error": "Could not generate file hash"})
|
110 |
-
|
111 |
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
112 |
-
|
113 |
-
# Check cache first
|
114 |
if os.path.exists(cache_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
"filename": os.path.basename(file_path),
|
127 |
-
"content": text,
|
128 |
-
"status": "initial",
|
129 |
-
"file_type": "pdf"
|
130 |
-
}
|
131 |
-
elif file_type == "csv":
|
132 |
-
df = pd.read_csv(
|
133 |
-
file_path,
|
134 |
-
encoding_errors="replace",
|
135 |
-
header=None,
|
136 |
-
dtype=str,
|
137 |
-
skip_blank_lines=False,
|
138 |
-
on_bad_lines="skip"
|
139 |
-
)
|
140 |
-
content = df.fillna("").astype(str).values.tolist()
|
141 |
-
result = {
|
142 |
-
"filename": os.path.basename(file_path),
|
143 |
-
"rows": content,
|
144 |
-
"file_type": "csv"
|
145 |
-
}
|
146 |
-
elif file_type in ["xls", "xlsx"]:
|
147 |
-
try:
|
148 |
-
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
149 |
-
except Exception:
|
150 |
-
try:
|
151 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
152 |
-
except Exception as excel_error:
|
153 |
-
logger.error(f"Excel read error for {file_path}: {str(excel_error)}")
|
154 |
-
raise
|
155 |
-
content = df.fillna("").astype(str).values.tolist()
|
156 |
-
result = {
|
157 |
-
"filename": os.path.basename(file_path),
|
158 |
-
"rows": content,
|
159 |
-
"file_type": "excel"
|
160 |
-
}
|
161 |
-
else:
|
162 |
-
result = {"error": f"Unsupported file type: {file_type}"}
|
163 |
-
|
164 |
-
json_result = json.dumps(result)
|
165 |
-
|
166 |
-
# Save to cache
|
167 |
-
try:
|
168 |
-
with open(cache_path, "w", encoding="utf-8") as f:
|
169 |
-
f.write(json_result)
|
170 |
-
except Exception as cache_write_error:
|
171 |
-
logger.error(f"Cache write error for {file_path}: {str(cache_write_error)}")
|
172 |
-
|
173 |
-
return json_result
|
174 |
-
except Exception as processing_error:
|
175 |
-
logger.error(f"Error processing {file_path}: {str(processing_error)}")
|
176 |
-
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(processing_error)}"})
|
177 |
except Exception as e:
|
178 |
-
|
179 |
-
return json.dumps({"error": f"Unexpected error processing file: {str(e)}"})
|
180 |
|
181 |
def log_system_usage(tag=""):
|
182 |
-
"""Log system resource usage including CPU, RAM, and GPU."""
|
183 |
try:
|
184 |
cpu = psutil.cpu_percent(interval=1)
|
185 |
mem = psutil.virtual_memory()
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
)
|
193 |
-
|
194 |
-
used, total, util = result.stdout.strip().split(", ")
|
195 |
-
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
196 |
-
except Exception as gpu_error:
|
197 |
-
logger.warning(f"[{tag}] GPU monitor failed: {gpu_error}")
|
198 |
except Exception as e:
|
199 |
-
|
200 |
|
201 |
def init_agent():
|
202 |
-
"
|
203 |
-
logger.info("Initializing model...")
|
204 |
log_system_usage("Before Load")
|
205 |
-
|
206 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
207 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
seed=100,
|
226 |
-
additional_default_tools=[],
|
227 |
-
)
|
228 |
-
agent.init_model()
|
229 |
-
log_system_usage("After Load")
|
230 |
-
logger.info("Agent initialization successful")
|
231 |
-
return agent
|
232 |
-
except Exception as e:
|
233 |
-
logger.error(f"Agent initialization failed: {str(e)}")
|
234 |
-
raise
|
235 |
-
|
236 |
-
def save_report(content: str, file_hash_value: str = "") -> str:
|
237 |
-
"""Save analysis report to file and return path."""
|
238 |
-
try:
|
239 |
-
if not file_hash_value:
|
240 |
-
file_hash_value = hashlib.md5(content.encode()).hexdigest()
|
241 |
-
|
242 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
243 |
-
report_filename = f"report_{timestamp}_{file_hash_value[:8]}.txt"
|
244 |
-
report_path = os.path.join(report_dir, report_filename)
|
245 |
-
|
246 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
247 |
-
f.write(content)
|
248 |
-
|
249 |
-
logger.info(f"Report saved to {report_path}")
|
250 |
-
return report_path
|
251 |
-
except Exception as e:
|
252 |
-
logger.error(f"Failed to save report: {str(e)}")
|
253 |
-
return ""
|
254 |
-
|
255 |
-
def clean_response(content: str) -> str:
|
256 |
-
"""Clean up model response by removing tool call artifacts."""
|
257 |
-
if not content:
|
258 |
-
return "⚠️ No content generated."
|
259 |
-
|
260 |
-
try:
|
261 |
-
# Remove tool call artifacts
|
262 |
-
cleaned = re.sub(r"\[TOOL_CALLS\].*?(?=(\[|\Z))", "", content, flags=re.DOTALL).strip()
|
263 |
-
# Remove excessive whitespace
|
264 |
-
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
|
265 |
-
return cleaned or "⚠️ Empty response after cleaning."
|
266 |
-
except Exception as e:
|
267 |
-
logger.error(f"Response cleaning failed: {str(e)}")
|
268 |
-
return content
|
269 |
-
|
270 |
-
def process_model_response(chunk: Any, history: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
271 |
-
"""Process model response chunk and update chat history."""
|
272 |
-
try:
|
273 |
-
if chunk is None:
|
274 |
-
return history
|
275 |
-
|
276 |
-
if isinstance(chunk, list) and all(hasattr(m, 'role') and hasattr(m, 'content') for m in chunk):
|
277 |
-
for m in chunk:
|
278 |
-
cleaned_content = clean_response(m.content)
|
279 |
-
history.append({"role": m.role, "content": cleaned_content})
|
280 |
-
elif isinstance(chunk, str):
|
281 |
-
cleaned_chunk = clean_response(chunk)
|
282 |
-
if history and history[-1]["role"] == "assistant":
|
283 |
-
history[-1]["content"] += cleaned_chunk
|
284 |
-
else:
|
285 |
-
history.append({"role": "assistant", "content": cleaned_chunk})
|
286 |
-
else:
|
287 |
-
logger.warning(f"Unexpected response type: {type(chunk)}")
|
288 |
-
|
289 |
-
return history
|
290 |
-
except Exception as e:
|
291 |
-
logger.error(f"Error processing model response: {str(e)}")
|
292 |
-
history.append({"role": "assistant", "content": f"⚠️ Error processing response: {str(e)}"})
|
293 |
-
return history
|
294 |
|
295 |
-
def
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
results = []
|
320 |
-
for f in as_completed(futures):
|
321 |
-
try:
|
322 |
-
results.append(sanitize_utf8(f.result()))
|
323 |
-
except Exception as e:
|
324 |
-
logger.error(f"Error getting file processing result: {str(e)}")
|
325 |
-
results.append(json.dumps({"error": "File processing failed"}))
|
326 |
-
|
327 |
-
extracted = "\n".join(results)
|
328 |
-
try:
|
329 |
-
file_hash_value = file_hash(files[0].name) if files else ""
|
330 |
-
except Exception as e:
|
331 |
-
logger.error(f"Error generating file hash: {str(e)}")
|
332 |
-
file_hash_value = ""
|
333 |
-
|
334 |
-
# Prepare prompt
|
335 |
-
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
336 |
1. List potential missed diagnoses
|
337 |
2. Flag any medication conflicts
|
338 |
3. Note incomplete assessments
|
339 |
4. Highlight abnormal results needing follow-up
|
340 |
-
|
341 |
Medical Records:
|
342 |
{extracted[:12000]}
|
343 |
-
|
344 |
### Potential Oversights:
|
345 |
"""
|
346 |
-
logger.info(f"Prompt length: {len(prompt)} characters")
|
347 |
-
|
348 |
-
# Initialize agent response
|
349 |
-
agent = init_agent()
|
350 |
-
response_content = ""
|
351 |
-
report_path = ""
|
352 |
-
|
353 |
-
# Process agent response
|
354 |
-
for chunk in agent.run_gradio_chat(
|
355 |
-
message=prompt,
|
356 |
-
history=[],
|
357 |
-
temperature=0.2,
|
358 |
-
max_new_tokens=2048,
|
359 |
-
max_token=4096,
|
360 |
-
call_agent=False,
|
361 |
-
conversation=[],
|
362 |
-
):
|
363 |
-
try:
|
364 |
-
new_history = process_model_response(chunk, new_history)
|
365 |
-
if isinstance(chunk, str):
|
366 |
-
response_content += clean_response(chunk)
|
367 |
-
|
368 |
-
yield new_history, None
|
369 |
-
except Exception as chunk_error:
|
370 |
-
logger.error(f"Error processing chunk: {str(chunk_error)}")
|
371 |
-
new_history.append({"role": "assistant", "content": f"⚠️ Error processing response chunk: {str(chunk_error)}"})
|
372 |
-
yield new_history, None
|
373 |
-
|
374 |
-
# Save final report
|
375 |
-
if response_content:
|
376 |
-
try:
|
377 |
-
report_path = save_report(response_content, file_hash_value)
|
378 |
-
except Exception as report_error:
|
379 |
-
logger.error(f"Error saving report: {str(report_error)}")
|
380 |
-
new_history.append({"role": "system", "content": "⚠️ Failed to save full report"})
|
381 |
-
|
382 |
-
yield new_history, report_path if report_path and os.path.exists(report_path) else None
|
383 |
-
|
384 |
-
except Exception as e:
|
385 |
-
logger.error(f"Analysis error: {str(e)}\n{traceback.format_exc()}")
|
386 |
-
error_history = history.copy()
|
387 |
-
error_history.append({"role": "assistant", "content": f"❌ Critical error occurred: {str(e)}"})
|
388 |
-
yield error_history, None
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
file_count="multiple",
|
421 |
-
label="Upload Medical Records"
|
422 |
-
)
|
423 |
-
download_output = gr.File(
|
424 |
-
label="Download Full Report",
|
425 |
-
interactive=False
|
426 |
-
)
|
427 |
-
gr.Markdown("""
|
428 |
-
<div style='margin-top: 20px; font-size: 0.9em; color: #666;'>
|
429 |
-
<b>Note:</b> The system analyzes PDFs, CSVs, and Excel files for potential clinical oversights.
|
430 |
-
</div>
|
431 |
-
""")
|
432 |
-
|
433 |
-
# Event handlers
|
434 |
-
send_btn.click(
|
435 |
-
analyze,
|
436 |
-
inputs=[msg_input, gr.State([]), file_upload],
|
437 |
-
outputs=[chatbot, download_output]
|
438 |
-
)
|
439 |
-
|
440 |
-
msg_input.submit(
|
441 |
-
analyze,
|
442 |
-
inputs=[msg_input, gr.State([]), file_upload],
|
443 |
-
outputs=[chatbot, download_output]
|
444 |
-
)
|
445 |
-
|
446 |
-
clear_btn.click(
|
447 |
-
lambda: ([], None),
|
448 |
-
inputs=[],
|
449 |
-
outputs=[chatbot, download_output]
|
450 |
-
)
|
451 |
-
|
452 |
-
# Add some examples
|
453 |
-
gr.Examples(
|
454 |
-
examples=[
|
455 |
-
["What potential diagnoses might have been missed in these records?"],
|
456 |
-
["Are there any medication conflicts I should be aware of?"],
|
457 |
-
["What abnormal results need follow-up in these reports?"]
|
458 |
-
],
|
459 |
-
inputs=msg_input,
|
460 |
-
label="Example Questions"
|
461 |
-
)
|
462 |
-
|
463 |
return demo
|
464 |
|
465 |
if __name__ == "__main__":
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
server_port=7860,
|
477 |
-
show_error=True,
|
478 |
-
allowed_paths=[report_dir],
|
479 |
-
share=False
|
480 |
-
)
|
481 |
-
except Exception as e:
|
482 |
-
logger.error(f"Application failed to start: {str(e)}\n{traceback.format_exc()}")
|
483 |
-
raise
|
|
|
4 |
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
+
from typing import List
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
12 |
import psutil
|
13 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Persistent directory
|
16 |
persistent_dir = "/data/hf_cache"
|
|
|
41 |
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
|
42 |
|
43 |
def sanitize_utf8(text: str) -> str:
|
44 |
+
return text.encode("utf-8", "ignore").decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def file_hash(path: str) -> str:
|
47 |
+
with open(path, "rb") as f:
|
48 |
+
return hashlib.md5(f.read()).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
|
|
|
51 |
try:
|
52 |
text_chunks = []
|
|
|
|
|
53 |
with pdfplumber.open(file_path) as pdf:
|
|
|
54 |
for i, page in enumerate(pdf.pages[:3]):
|
55 |
+
text = page.extract_text() or ""
|
56 |
+
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
|
58 |
+
page_text = page.extract_text() or ""
|
59 |
+
if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
|
60 |
+
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
|
|
|
|
|
|
|
|
|
61 |
return "\n\n".join(text_chunks)
|
62 |
except Exception as e:
|
|
|
63 |
return f"PDF processing error: {str(e)}"
|
64 |
|
65 |
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
|
66 |
try:
|
67 |
h = file_hash(file_path)
|
|
|
|
|
|
|
68 |
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
|
|
|
|
69 |
if os.path.exists(cache_path):
|
70 |
+
with open(cache_path, "r", encoding="utf-8") as f:
|
71 |
+
return f.read()
|
72 |
+
|
73 |
+
if file_type == "pdf":
|
74 |
+
text = extract_priority_pages(file_path)
|
75 |
+
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
76 |
+
elif file_type == "csv":
|
77 |
+
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
78 |
+
skip_blank_lines=False, on_bad_lines="skip")
|
79 |
+
content = df.fillna("").astype(str).values.tolist()
|
80 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
81 |
+
elif file_type in ["xls", "xlsx"]:
|
82 |
try:
|
83 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
84 |
+
except Exception:
|
85 |
+
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
86 |
+
content = df.fillna("").astype(str).values.tolist()
|
87 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
88 |
+
else:
|
89 |
+
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
90 |
+
with open(cache_path, "w", encoding="utf-8") as f:
|
91 |
+
f.write(result)
|
92 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
except Exception as e:
|
94 |
+
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
|
|
95 |
|
96 |
def log_system_usage(tag=""):
|
|
|
97 |
try:
|
98 |
cpu = psutil.cpu_percent(interval=1)
|
99 |
mem = psutil.virtual_memory()
|
100 |
+
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
101 |
+
result = subprocess.run(
|
102 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
103 |
+
capture_output=True, text=True
|
104 |
+
)
|
105 |
+
if result.returncode == 0:
|
106 |
+
used, total, util = result.stdout.strip().split(", ")
|
107 |
+
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
+
print(f"[{tag}] GPU/CPU monitor failed: {e}")
|
110 |
|
111 |
def init_agent():
|
112 |
+
print("🔁 Initializing model...")
|
|
|
113 |
log_system_usage("Before Load")
|
|
|
114 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
115 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
116 |
+
if not os.path.exists(target_tool_path):
|
117 |
+
shutil.copy(default_tool_path, target_tool_path)
|
118 |
+
|
119 |
+
agent = TxAgent(
|
120 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
121 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
122 |
+
tool_files_dict={"new_tool": target_tool_path},
|
123 |
+
force_finish=True,
|
124 |
+
enable_checker=True,
|
125 |
+
step_rag_num=8,
|
126 |
+
seed=100,
|
127 |
+
additional_default_tools=[],
|
128 |
+
)
|
129 |
+
agent.init_model()
|
130 |
+
log_system_usage("After Load")
|
131 |
+
print("✅ Agent Ready")
|
132 |
+
return agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
def create_ui(agent):
|
135 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
136 |
+
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
137 |
+
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
138 |
+
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
139 |
+
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
140 |
+
send_btn = gr.Button("Analyze", variant="primary")
|
141 |
+
download_output = gr.File(label="Download Full Report")
|
142 |
+
|
143 |
+
def analyze(message: str, history: list, files: list):
|
144 |
+
history = history + [{"role": "user", "content": message}]
|
145 |
+
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
|
146 |
+
yield history, None
|
147 |
+
|
148 |
+
extracted = ""
|
149 |
+
file_hash_value = ""
|
150 |
+
if files:
|
151 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
152 |
+
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
|
153 |
+
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
154 |
+
extracted = "\n".join(results)
|
155 |
+
file_hash_value = file_hash(files[0].name)
|
156 |
+
|
157 |
+
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
1. List potential missed diagnoses
|
159 |
2. Flag any medication conflicts
|
160 |
3. Note incomplete assessments
|
161 |
4. Highlight abnormal results needing follow-up
|
|
|
162 |
Medical Records:
|
163 |
{extracted[:12000]}
|
|
|
164 |
### Potential Oversights:
|
165 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
try:
|
168 |
+
for chunk in agent.run_gradio_chat(
|
169 |
+
message=prompt,
|
170 |
+
history=[],
|
171 |
+
temperature=0.2,
|
172 |
+
max_new_tokens=2048,
|
173 |
+
max_token=4096,
|
174 |
+
call_agent=False,
|
175 |
+
conversation=[],
|
176 |
+
):
|
177 |
+
if chunk is None:
|
178 |
+
continue
|
179 |
+
if isinstance(chunk, list):
|
180 |
+
for m in chunk:
|
181 |
+
history.append({"role": m.role, "content": m.content})
|
182 |
+
yield history, None
|
183 |
+
elif isinstance(chunk, str):
|
184 |
+
history[-1]["content"] += chunk
|
185 |
+
yield history, None
|
186 |
+
|
187 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
188 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print("🚨 ERROR:", e)
|
192 |
+
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
193 |
+
yield history, None
|
194 |
+
|
195 |
+
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
196 |
+
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
return demo
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
+
print("🚀 Launching app...")
|
201 |
+
agent = init_agent()
|
202 |
+
demo = create_ui(agent)
|
203 |
+
demo.queue(api_open=False).launch(
|
204 |
+
server_name="0.0.0.0",
|
205 |
+
server_port=7860,
|
206 |
+
show_error=True,
|
207 |
+
allowed_paths=[report_dir],
|
208 |
+
share=False
|
209 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|