Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
from typing import List
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
import hashlib
|
9 |
import shutil
|
10 |
import re
|
@@ -27,7 +27,7 @@ except ImportError:
|
|
27 |
HAS_PYPDFIUM2 = False
|
28 |
import pdfplumber
|
29 |
|
30 |
-
# Configure logging
|
31 |
logging.basicConfig(level=logging.INFO)
|
32 |
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
33 |
logger = logging.getLogger(__name__)
|
@@ -67,76 +67,58 @@ def file_hash(path: str) -> str:
|
|
67 |
with open(path, "rb") as f:
|
68 |
return hashlib.md5(f.read()).hexdigest()
|
69 |
|
70 |
-
async def extract_all_pages_async(file_path: str, progress_callback=None,
|
71 |
try:
|
|
|
|
|
|
|
|
|
72 |
if HAS_PYPDFIUM2:
|
73 |
pdf = pdfium.PdfDocument(file_path)
|
74 |
total_pages = len(pdf)
|
75 |
if total_pages == 0:
|
76 |
return ""
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
text = page.get_textpage().get_text_range() or ""
|
88 |
-
if not text.strip() and use_ocr and 'pytesseract' in sys.modules:
|
89 |
-
bitmap = page.render(scale=2).to_pil()
|
90 |
-
text = pytesseract.image_to_string(bitmap, lang="eng")
|
91 |
-
results.append((i, f"=== Page {i + 1} ===\n{text.strip()}"))
|
92 |
-
return results
|
93 |
-
|
94 |
-
loop = asyncio.get_event_loop()
|
95 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
96 |
-
futures = [
|
97 |
-
for future in
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
processed_pages += batch_size
|
102 |
if progress_callback:
|
103 |
-
progress_callback(
|
104 |
|
|
|
|
|
105 |
pdf.close()
|
106 |
else:
|
107 |
-
# Fallback to pdfplumber
|
108 |
with pdfplumber.open(file_path) as pdf:
|
109 |
total_pages = len(pdf.pages)
|
110 |
if total_pages == 0:
|
111 |
return ""
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
page = pdf.pages[i]
|
123 |
-
text = page.extract_text() or ""
|
124 |
-
results.append((i, f"=== Page {i + 1} ===\n{text.strip()}"))
|
125 |
-
return results
|
126 |
-
|
127 |
-
loop = asyncio.get_event_loop()
|
128 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
129 |
-
futures = [loop.run_in_executor(executor, extract_batch, start, end) for start, end in batches]
|
130 |
-
for future in await asyncio.gather(*futures):
|
131 |
-
for page_num, text in future:
|
132 |
-
text_chunks[page_num] = text
|
133 |
-
logger.debug("Page %d extracted: %s...", page_num + 1, text[:50])
|
134 |
-
processed_pages += batch_size
|
135 |
-
if progress_callback:
|
136 |
-
progress_callback(min(processed_pages, total_pages), total_pages)
|
137 |
-
|
138 |
-
extracted_text = "\n\n".join(filter(None, text_chunks))
|
139 |
logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text))
|
|
|
|
|
|
|
140 |
return extracted_text
|
141 |
except Exception as e:
|
142 |
logger.error("PDF processing error: %s", e)
|
@@ -151,10 +133,7 @@ def convert_file_to_json(file_path: str, file_type: str, progress_callback=None)
|
|
151 |
return cache[cache_key]
|
152 |
|
153 |
if file_type == "pdf":
|
154 |
-
text = asyncio.run(extract_all_pages_async(file_path, progress_callback,
|
155 |
-
if not text.strip() or "PDF processing error" in text:
|
156 |
-
logger.info("Retrying extraction with OCR for %s", file_path)
|
157 |
-
text = asyncio.run(extract_all_pages_async(file_path, progress_callback, use_ocr=True))
|
158 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
159 |
elif file_type == "csv":
|
160 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
@@ -199,10 +178,12 @@ def clean_response(text: str) -> str:
|
|
199 |
text = text.replace("\n\n\n", "\n\n")
|
200 |
sections = {}
|
201 |
current_section = None
|
|
|
202 |
for line in text.splitlines():
|
203 |
line = line.strip()
|
204 |
-
if not line:
|
205 |
continue
|
|
|
206 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
207 |
if section_match:
|
208 |
current_section = section_match.group(1)
|
@@ -213,13 +194,21 @@ def clean_response(text: str) -> str:
|
|
213 |
cleaned = [f"### {heading}\n" + "\n".join(findings) for heading, findings in sections.items() if findings]
|
214 |
result = "\n\n".join(cleaned).strip()
|
215 |
logger.debug("Cleaned response length: %d chars", len(result))
|
216 |
-
return result or "No
|
217 |
-
|
218 |
-
def summarize_findings(
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
current_section = None
|
|
|
223 |
for line in combined_response.splitlines():
|
224 |
line = line.strip()
|
225 |
if not line:
|
@@ -227,15 +216,19 @@ def summarize_findings(combined_response: str) -> str:
|
|
227 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
228 |
if section_match:
|
229 |
current_section = section_match.group(1)
|
230 |
-
sections.setdefault(current_section, [])
|
231 |
continue
|
232 |
-
if current_section and line.startswith("- "):
|
233 |
-
sections[current_section].append(line
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
logger.debug("Summary length: %d chars", len(result))
|
240 |
return result
|
241 |
|
@@ -267,8 +260,8 @@ def init_agent():
|
|
267 |
def create_ui(agent):
|
268 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
269 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
270 |
-
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
|
271 |
-
final_summary = gr.Markdown(label="
|
272 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
273 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
274 |
send_btn = gr.Button("Analyze", variant="primary")
|
@@ -276,9 +269,9 @@ def create_ui(agent):
|
|
276 |
progress_bar = gr.Progress()
|
277 |
|
278 |
prompt_template = """
|
279 |
-
Analyze the patient record excerpt for clinical oversights. Provide a
|
280 |
|
281 |
-
Patient Record Excerpt
|
282 |
{chunk}
|
283 |
"""
|
284 |
|
@@ -302,69 +295,64 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
302 |
yield history, None, ""
|
303 |
logger.info("Extracted text length: %d chars", len(extracted))
|
304 |
|
305 |
-
chunk_size = 3000
|
306 |
-
chunks = [extracted[i:i + chunk_size] for i in range(0, max(len(extracted), 1), chunk_size)]
|
307 |
-
if not chunks:
|
308 |
-
chunks = [""] # Ensure at least one chunk
|
309 |
logger.info("Created %d chunks", len(chunks))
|
310 |
-
|
|
|
|
|
311 |
batch_size = 2
|
312 |
|
313 |
try:
|
314 |
for batch_idx in range(0, len(chunks), batch_size):
|
315 |
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
316 |
-
batch_prompts = [prompt_template.format(
|
317 |
batch_responses = []
|
318 |
|
319 |
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")
|
320 |
|
321 |
async def process_chunk(prompt):
|
322 |
chunk_response = ""
|
|
|
323 |
for chunk_output in agent.run_gradio_chat(
|
324 |
-
message=prompt, history=[], temperature=0.2, max_new_tokens=
|
325 |
):
|
326 |
if chunk_output is None:
|
327 |
continue
|
328 |
if isinstance(chunk_output, list):
|
329 |
for m in chunk_output:
|
330 |
if hasattr(m, 'content') and m.content:
|
|
|
331 |
cleaned = clean_response(m.content)
|
332 |
chunk_response += cleaned + "\n\n"
|
333 |
elif isinstance(chunk_output, str) and chunk_output.strip():
|
|
|
334 |
cleaned = clean_response(chunk_output)
|
335 |
chunk_response += cleaned + "\n\n"
|
|
|
336 |
logger.debug("Chunk response length: %d chars", len(chunk_response))
|
337 |
return chunk_response
|
338 |
|
339 |
futures = [process_chunk(prompt) for prompt in batch_prompts]
|
340 |
batch_responses = await asyncio.gather(*futures)
|
|
|
341 |
torch.cuda.empty_cache()
|
342 |
gc.collect()
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
else:
|
348 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
349 |
-
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
350 |
-
yield history, None, ""
|
351 |
-
|
352 |
-
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
353 |
-
history[-1]["content"] = combined_response.strip()
|
354 |
-
else:
|
355 |
-
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
356 |
|
357 |
-
summary = summarize_findings(combined_response)
|
358 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
359 |
if report_path:
|
360 |
with open(report_path, "w", encoding="utf-8") as f:
|
361 |
-
f.write(
|
362 |
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
363 |
|
364 |
except Exception as e:
|
365 |
logger.error("Analysis error: %s", e)
|
366 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
367 |
-
yield history, None, f"###
|
368 |
|
369 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
370 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
|
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
from typing import List
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
import hashlib
|
9 |
import shutil
|
10 |
import re
|
|
|
27 |
HAS_PYPDFIUM2 = False
|
28 |
import pdfplumber
|
29 |
|
30 |
+
# Configure logging
|
31 |
logging.basicConfig(level=logging.INFO)
|
32 |
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
33 |
logger = logging.getLogger(__name__)
|
|
|
67 |
with open(path, "rb") as f:
|
68 |
return hashlib.md5(f.read()).hexdigest()
|
69 |
|
70 |
+
async def extract_all_pages_async(file_path: str, progress_callback=None, force_ocr=False) -> str:
|
71 |
try:
|
72 |
+
extracted_text = ""
|
73 |
+
total_pages = 0
|
74 |
+
text_chunks = []
|
75 |
+
|
76 |
if HAS_PYPDFIUM2:
|
77 |
pdf = pdfium.PdfDocument(file_path)
|
78 |
total_pages = len(pdf)
|
79 |
if total_pages == 0:
|
80 |
return ""
|
81 |
|
82 |
+
def extract_page(i):
|
83 |
+
page = pdf[i]
|
84 |
+
text = page.get_textpage().get_text_range() or ""
|
85 |
+
if (not text.strip() or len(text) < 100) and force_ocr and 'pytesseract' in sys.modules:
|
86 |
+
logger.info("Falling back to OCR for page %d", i + 1)
|
87 |
+
bitmap = page.render(scale=2).to_pil()
|
88 |
+
text = pytesseract.image_to_string(bitmap, lang="eng")
|
89 |
+
return (i, f"=== Page {i + 1} ===\n{text.strip()}")
|
90 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
92 |
+
futures = [executor.submit(extract_page, i) for i in range(total_pages)]
|
93 |
+
for future in as_completed(futures):
|
94 |
+
page_num, text = future.result()
|
95 |
+
text_chunks.append((page_num, text))
|
96 |
+
logger.debug("Page %d extracted: %s...", page_num + 1, text[:50])
|
|
|
97 |
if progress_callback:
|
98 |
+
progress_callback(page_num + 1, total_pages)
|
99 |
|
100 |
+
text_chunks.sort(key=lambda x: x[0])
|
101 |
+
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())
|
102 |
pdf.close()
|
103 |
else:
|
|
|
104 |
with pdfplumber.open(file_path) as pdf:
|
105 |
total_pages = len(pdf.pages)
|
106 |
if total_pages == 0:
|
107 |
return ""
|
108 |
|
109 |
+
for i, page in enumerate(pdf.pages):
|
110 |
+
text = page.extract_text() or ""
|
111 |
+
text_chunks.append((i, f"=== Page {i + 1} ===\n{text.strip()}"))
|
112 |
+
logger.debug("Page %d extracted: %s...", i + 1, text[:50])
|
113 |
+
if progress_callback:
|
114 |
+
progress_callback(i + 1, total_pages)
|
115 |
+
|
116 |
+
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())
|
117 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text))
|
119 |
+
if len(extracted_text) < 1000 and not force_ocr and HAS_PYPDFIUM2 and 'pytesseract' in sys.modules:
|
120 |
+
logger.info("Text too short, retrying with OCR")
|
121 |
+
return await extract_all_pages_async(file_path, progress_callback, force_ocr=True)
|
122 |
return extracted_text
|
123 |
except Exception as e:
|
124 |
logger.error("PDF processing error: %s", e)
|
|
|
133 |
return cache[cache_key]
|
134 |
|
135 |
if file_type == "pdf":
|
136 |
+
text = asyncio.run(extract_all_pages_async(file_path, progress_callback, force_ocr=False))
|
|
|
|
|
|
|
137 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
138 |
elif file_type == "csv":
|
139 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
|
|
178 |
text = text.replace("\n\n\n", "\n\n")
|
179 |
sections = {}
|
180 |
current_section = None
|
181 |
+
seen_lines = set()
|
182 |
for line in text.splitlines():
|
183 |
line = line.strip()
|
184 |
+
if not line or line in seen_lines:
|
185 |
continue
|
186 |
+
seen_lines.add(line)
|
187 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
188 |
if section_match:
|
189 |
current_section = section_match.group(1)
|
|
|
194 |
cleaned = [f"### {heading}\n" + "\n".join(findings) for heading, findings in sections.items() if findings]
|
195 |
result = "\n\n".join(cleaned).strip()
|
196 |
logger.debug("Cleaned response length: %d chars", len(result))
|
197 |
+
return result or "No oversights identified"
|
198 |
+
|
199 |
+
def summarize_findings(all_responses: List[str]) -> str:
|
200 |
+
combined_response = "\n\n".join(all_responses)
|
201 |
+
if not combined_response or all("No oversights identified" in resp.lower() for resp in all_responses):
|
202 |
+
return "### Comprehensive Clinical Oversight Summary\nNo critical oversights were identified across the provided patient records after thorough analysis."
|
203 |
+
|
204 |
+
sections = {
|
205 |
+
"Missed Diagnoses": [],
|
206 |
+
"Medication Conflicts": [],
|
207 |
+
"Incomplete Assessments": [],
|
208 |
+
"Urgent Follow-up": []
|
209 |
+
}
|
210 |
current_section = None
|
211 |
+
seen_findings = set()
|
212 |
for line in combined_response.splitlines():
|
213 |
line = line.strip()
|
214 |
if not line:
|
|
|
216 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
217 |
if section_match:
|
218 |
current_section = section_match.group(1)
|
|
|
219 |
continue
|
220 |
+
if current_section and line.startswith("- ") and line not in seen_findings:
|
221 |
+
sections[current_section].append(line)
|
222 |
+
seen_findings.add(line)
|
223 |
+
|
224 |
+
summary_lines = []
|
225 |
+
for heading, findings in sections.items():
|
226 |
+
if findings:
|
227 |
+
summary_lines.append(f"### {heading}")
|
228 |
+
for finding in findings:
|
229 |
+
summary_lines.append(f"{finding}\n - **Risks**: Potential adverse outcomes if not addressed.\n - **Recommendation**: Immediate clinical review and follow-up.")
|
230 |
+
|
231 |
+
result = "### Comprehensive Clinical Oversight Summary\n" + "\n".join(summary_lines) if summary_lines else "### Comprehensive Clinical Oversight Summary\nNo critical oversights identified."
|
232 |
logger.debug("Summary length: %d chars", len(result))
|
233 |
return result
|
234 |
|
|
|
260 |
def create_ui(agent):
|
261 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
262 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
263 |
+
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages", visible=False)
|
264 |
+
final_summary = gr.Markdown(label="Comprehensive Clinical Oversight Summary")
|
265 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
266 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
267 |
send_btn = gr.Button("Analyze", variant="primary")
|
|
|
269 |
progress_bar = gr.Progress()
|
270 |
|
271 |
prompt_template = """
|
272 |
+
Analyze the patient record excerpt for clinical oversights. Provide a detailed, evidence-based summary in markdown with findings grouped under headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, Urgent Follow-up. For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No oversights identified" once.
|
273 |
|
274 |
+
Patient Record Excerpt:
|
275 |
{chunk}
|
276 |
"""
|
277 |
|
|
|
295 |
yield history, None, ""
|
296 |
logger.info("Extracted text length: %d chars", len(extracted))
|
297 |
|
298 |
+
chunk_size = 3000
|
299 |
+
chunks = [extracted[i:i + chunk_size] for i in range(0, max(len(extracted), 1), chunk_size)] or [""]
|
|
|
|
|
300 |
logger.info("Created %d chunks", len(chunks))
|
301 |
+
for i, chunk in enumerate(chunks):
|
302 |
+
logger.debug("Chunk %d content: %s...", i + 1, chunk[:100])
|
303 |
+
all_responses = []
|
304 |
batch_size = 2
|
305 |
|
306 |
try:
|
307 |
for batch_idx in range(0, len(chunks), batch_size):
|
308 |
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
309 |
+
batch_prompts = [prompt_template.format(chunk=chunk[:2000]) for chunk in batch_chunks]
|
310 |
batch_responses = []
|
311 |
|
312 |
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")
|
313 |
|
314 |
async def process_chunk(prompt):
|
315 |
chunk_response = ""
|
316 |
+
raw_outputs = []
|
317 |
for chunk_output in agent.run_gradio_chat(
|
318 |
+
message=prompt, history=[], temperature=0.2, max_new_tokens=512, max_token=1024, call_agent=False, conversation=[]
|
319 |
):
|
320 |
if chunk_output is None:
|
321 |
continue
|
322 |
if isinstance(chunk_output, list):
|
323 |
for m in chunk_output:
|
324 |
if hasattr(m, 'content') and m.content:
|
325 |
+
raw_outputs.append(m.content)
|
326 |
cleaned = clean_response(m.content)
|
327 |
chunk_response += cleaned + "\n\n"
|
328 |
elif isinstance(chunk_output, str) and chunk_output.strip():
|
329 |
+
raw_outputs.append(chunk_output)
|
330 |
cleaned = clean_response(chunk_output)
|
331 |
chunk_response += cleaned + "\n\n"
|
332 |
+
logger.debug("Raw outputs: %s", raw_outputs[:100])
|
333 |
logger.debug("Chunk response length: %d chars", len(chunk_response))
|
334 |
return chunk_response
|
335 |
|
336 |
futures = [process_chunk(prompt) for prompt in batch_prompts]
|
337 |
batch_responses = await asyncio.gather(*futures)
|
338 |
+
all_responses.extend([resp.strip() for resp in batch_responses if resp.strip()])
|
339 |
torch.cuda.empty_cache()
|
340 |
gc.collect()
|
341 |
|
342 |
+
summary = summarize_findings(all_responses)
|
343 |
+
history.append({"role": "assistant", "content": "Analysis complete. See summary below."})
|
344 |
+
yield history, None, summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
|
|
346 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
347 |
if report_path:
|
348 |
with open(report_path, "w", encoding="utf-8") as f:
|
349 |
+
f.write(summary)
|
350 |
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
351 |
|
352 |
except Exception as e:
|
353 |
logger.error("Analysis error: %s", e)
|
354 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
355 |
+
yield history, None, f"### Comprehensive Clinical Oversight Summary\nError occurred during analysis: {str(e)}"
|
356 |
|
357 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
358 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|