Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,11 @@ import subprocess
|
|
14 |
import multiprocessing
|
15 |
from functools import partial
|
16 |
import time
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Persistent directory
|
19 |
persistent_dir = "/data/hf_cache"
|
@@ -47,8 +52,8 @@ def file_hash(path: str) -> str:
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
50 |
-
def chunk_hash(chunk: str) -> str:
|
51 |
-
return hashlib.md5(chunk.encode("utf-8")).hexdigest()
|
52 |
|
53 |
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
54 |
"""Extract text from a range of PDF pages."""
|
@@ -59,7 +64,8 @@ def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
|
59 |
page_text = page.extract_text() or ""
|
60 |
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
|
61 |
return "\n\n".join(text_chunks)
|
62 |
-
except Exception:
|
|
|
63 |
return ""
|
64 |
|
65 |
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
@@ -90,6 +96,7 @@ def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
90 |
|
91 |
return "\n\n".join(filter(None, results))
|
92 |
except Exception as e:
|
|
|
93 |
return f"PDF processing error: {str(e)}"
|
94 |
|
95 |
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
|
@@ -121,22 +128,23 @@ def convert_file_to_json(file_path: str, file_type: str, progress_callback=None)
|
|
121 |
f.write(result)
|
122 |
return result
|
123 |
except Exception as e:
|
|
|
124 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
125 |
|
126 |
def log_system_usage(tag=""):
|
127 |
try:
|
128 |
cpu = psutil.cpu_percent(interval=1)
|
129 |
mem = psutil.virtual_memory()
|
130 |
-
|
131 |
result = subprocess.run(
|
132 |
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
133 |
capture_output=True, text=True
|
134 |
)
|
135 |
if result.returncode == 0:
|
136 |
used, total, util = result.stdout.strip().split(", ")
|
137 |
-
|
138 |
except Exception as e:
|
139 |
-
|
140 |
|
141 |
def clean_response(text: str) -> str:
|
142 |
"""Clean TxAgent response to group findings under tool-derived headings."""
|
@@ -191,7 +199,7 @@ def clean_response(text: str) -> str:
|
|
191 |
return text
|
192 |
|
193 |
def init_agent():
|
194 |
-
|
195 |
log_system_usage("Before Load")
|
196 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
197 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
@@ -204,25 +212,75 @@ def init_agent():
|
|
204 |
tool_files_dict={"new_tool": target_tool_path},
|
205 |
force_finish=True,
|
206 |
enable_checker=True,
|
207 |
-
step_rag_num=2,
|
208 |
seed=100,
|
209 |
additional_default_tools=[],
|
210 |
)
|
211 |
agent.init_model()
|
212 |
log_system_usage("After Load")
|
213 |
-
|
214 |
return agent
|
215 |
|
216 |
-
def process_chunk(agent, chunk: str, chunk_idx: int, total_chunks: int, cache_path: str) ->
|
217 |
-
"""Process a single chunk
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
220 |
|
221 |
if os.path.exists(chunk_cache_path):
|
222 |
with open(chunk_cache_path, "r", encoding="utf-8") as f:
|
223 |
-
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include:
|
227 |
- Clinical context (why the issue was missed or relevant details from the record).
|
228 |
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
@@ -243,45 +301,6 @@ Example Output:
|
|
243 |
Patient Record Excerpt (Chunk {0} of {1}):
|
244 |
{chunk}
|
245 |
"""
|
246 |
-
prompt = prompt_template.format(chunk_idx, total_chunks, chunk=chunk[:2000]) # Truncate to avoid token limits
|
247 |
-
chunk_response = ""
|
248 |
-
|
249 |
-
for chunk_output in agent.run_gradio_chat(
|
250 |
-
message=prompt,
|
251 |
-
history=[],
|
252 |
-
temperature=0.2,
|
253 |
-
max_new_tokens=512, # Reduced for speed
|
254 |
-
max_token=2048, # Reduced for speed
|
255 |
-
call_agent=False,
|
256 |
-
conversation=[],
|
257 |
-
):
|
258 |
-
if chunk_output is None:
|
259 |
-
continue
|
260 |
-
if isinstance(chunk_output, list):
|
261 |
-
for m in chunk_output:
|
262 |
-
if hasattr(m, 'content') and m.content:
|
263 |
-
cleaned = clean_response(m.content)
|
264 |
-
if cleaned and re.search(r"###\s*\w+", cleaned):
|
265 |
-
chunk_response += cleaned + "\n\n"
|
266 |
-
elif isinstance(chunk_output, str) and chunk_output.strip():
|
267 |
-
cleaned = clean_response(chunk_output)
|
268 |
-
if cleaned and re.search(r"###\s*\w+", cleaned):
|
269 |
-
chunk_response += cleaned + "\n\n"
|
270 |
-
|
271 |
-
if chunk_response:
|
272 |
-
with open(chunk_cache_path, "w", encoding="utf-8") as f:
|
273 |
-
f.write(chunk_response)
|
274 |
-
return chunk_response
|
275 |
-
|
276 |
-
def create_ui(agent):
|
277 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
278 |
-
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
279 |
-
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
280 |
-
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
281 |
-
max_chunks_input = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Max Chunks to Analyze")
|
282 |
-
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
283 |
-
send_btn = gr.Button("Analyze", variant="primary")
|
284 |
-
download_output = gr.File(label="Download Full Report")
|
285 |
|
286 |
def analyze(message: str, history: List[dict], files: List, max_chunks: int):
|
287 |
history.append({"role": "user", "content": message})
|
@@ -311,7 +330,7 @@ def create_ui(agent):
|
|
311 |
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
312 |
yield history, None
|
313 |
|
314 |
-
chunk_size =
|
315 |
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
316 |
chunks = chunks[:max_chunks] # Limit to max_chunks
|
317 |
total_chunks = len(chunks)
|
@@ -323,24 +342,17 @@ def create_ui(agent):
|
|
323 |
return
|
324 |
|
325 |
try:
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
if chunk_response:
|
338 |
-
combined_response += f"--- Analysis for Chunk {idx + 1} ---\n{chunk_response}\n"
|
339 |
-
else:
|
340 |
-
combined_response += f"--- Analysis for Chunk {idx + 1} ---\nNo oversights identified for this chunk.\n\n"
|
341 |
-
|
342 |
-
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
343 |
-
yield history, None
|
344 |
|
345 |
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
346 |
history[-1]["content"] = combined_response.strip()
|
@@ -354,7 +366,7 @@ def create_ui(agent):
|
|
354 |
yield history, report_path if report_path and os.path.exists(report_path) else None
|
355 |
|
356 |
except Exception as e:
|
357 |
-
|
358 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
359 |
yield history, None
|
360 |
|
@@ -363,7 +375,7 @@ def create_ui(agent):
|
|
363 |
return demo
|
364 |
|
365 |
if __name__ == "__main__":
|
366 |
-
|
367 |
agent = init_agent()
|
368 |
demo = create_ui(agent)
|
369 |
demo.queue(api_open=False).launch(
|
|
|
14 |
import multiprocessing
|
15 |
from functools import partial
|
16 |
import time
|
17 |
+
import logging
|
18 |
+
|
19 |
+
# Setup logging
|
20 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
|
23 |
# Persistent directory
|
24 |
persistent_dir = "/data/hf_cache"
|
|
|
52 |
with open(path, "rb") as f:
|
53 |
return hashlib.md5(f.read()).hexdigest()
|
54 |
|
55 |
+
def chunk_hash(chunk: str, prompt: str) -> str:
|
56 |
+
return hashlib.md5((chunk + prompt).encode("utf-8")).hexdigest()
|
57 |
|
58 |
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
59 |
"""Extract text from a range of PDF pages."""
|
|
|
64 |
page_text = page.extract_text() or ""
|
65 |
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
|
66 |
return "\n\n".join(text_chunks)
|
67 |
+
except Exception as e:
|
68 |
+
logger.error(f"Error extracting pages {start_page}-{end_page}: {e}")
|
69 |
return ""
|
70 |
|
71 |
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
|
96 |
|
97 |
return "\n\n".join(filter(None, results))
|
98 |
except Exception as e:
|
99 |
+
logger.error(f"PDF processing error: {e}")
|
100 |
return f"PDF processing error: {str(e)}"
|
101 |
|
102 |
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
|
|
|
128 |
f.write(result)
|
129 |
return result
|
130 |
except Exception as e:
|
131 |
+
logger.error(f"Error processing {file_path}: {e}")
|
132 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
133 |
|
134 |
def log_system_usage(tag=""):
|
135 |
try:
|
136 |
cpu = psutil.cpu_percent(interval=1)
|
137 |
mem = psutil.virtual_memory()
|
138 |
+
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
139 |
result = subprocess.run(
|
140 |
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
141 |
capture_output=True, text=True
|
142 |
)
|
143 |
if result.returncode == 0:
|
144 |
used, total, util = result.stdout.strip().split(", ")
|
145 |
+
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
146 |
except Exception as e:
|
147 |
+
logger.error(f"[{tag}] GPU/CPU monitor failed: {e}")
|
148 |
|
149 |
def clean_response(text: str) -> str:
|
150 |
"""Clean TxAgent response to group findings under tool-derived headings."""
|
|
|
199 |
return text
|
200 |
|
201 |
def init_agent():
|
202 |
+
logger.info("Initializing model...")
|
203 |
log_system_usage("Before Load")
|
204 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
205 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
|
|
212 |
tool_files_dict={"new_tool": target_tool_path},
|
213 |
force_finish=True,
|
214 |
enable_checker=True,
|
215 |
+
step_rag_num=2,
|
216 |
seed=100,
|
217 |
additional_default_tools=[],
|
218 |
)
|
219 |
agent.init_model()
|
220 |
log_system_usage("After Load")
|
221 |
+
logger.info("Agent Ready")
|
222 |
return agent
|
223 |
|
224 |
+
def process_chunk(agent, chunk: str, chunk_idx: int, total_chunks: int, cache_path: str, prompt_template: str) -> tuple:
|
225 |
+
"""Process a single chunk with error handling and caching."""
|
226 |
+
if not chunk.strip():
|
227 |
+
logger.warning(f"Chunk {chunk_idx} is empty, skipping...")
|
228 |
+
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
229 |
+
|
230 |
+
chunk_id = chunk_hash(chunk, prompt_template)
|
231 |
+
chunk_cache_path = os.path.join(cache_path, f"chunk_{chunk_id}.txt")
|
232 |
|
233 |
if os.path.exists(chunk_cache_path):
|
234 |
with open(chunk_cache_path, "r", encoding="utf-8") as f:
|
235 |
+
logger.info(f"Cache hit for chunk {chunk_idx}")
|
236 |
+
return chunk_idx, f.read()
|
237 |
+
|
238 |
+
prompt = prompt_template.format(chunk_idx, total_chunks, chunk=chunk[:1000]) # Truncate to avoid token limits
|
239 |
+
chunk_response = ""
|
240 |
|
241 |
+
try:
|
242 |
+
for chunk_output in agent.run_gradio_chat(
|
243 |
+
message=prompt,
|
244 |
+
history=[],
|
245 |
+
temperature=0.2,
|
246 |
+
max_new_tokens=512,
|
247 |
+
max_token=2048,
|
248 |
+
call_agent=False,
|
249 |
+
conversation=[],
|
250 |
+
):
|
251 |
+
if chunk_output is None:
|
252 |
+
continue
|
253 |
+
if isinstance(chunk_output, list):
|
254 |
+
for m in chunk_output:
|
255 |
+
if hasattr(m, 'content') and m.content:
|
256 |
+
cleaned = clean_response(m.content)
|
257 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
258 |
+
chunk_response += cleaned + "\n\n"
|
259 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
260 |
+
cleaned = clean_response(chunk_output)
|
261 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
262 |
+
chunk_response += cleaned + "\n\n"
|
263 |
+
except Exception as e:
|
264 |
+
logger.error(f"Error processing chunk {chunk_idx}: {e}")
|
265 |
+
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nError occurred: {str(e)}\n\n"
|
266 |
+
|
267 |
+
if chunk_response:
|
268 |
+
with open(chunk_cache_path, "w", encoding="utf-8") as f:
|
269 |
+
f.write(chunk_response)
|
270 |
+
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
271 |
+
return chunk_idx, f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
272 |
+
|
273 |
+
def create_ui(agent):
|
274 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
275 |
+
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
276 |
+
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
277 |
+
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
278 |
+
max_chunks_input = gr.Slider(minimum=1, maximum=50, value=5, step=1, label="Max Chunks to Analyze")
|
279 |
+
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
280 |
+
send_btn = gr.Button("Analyze", variant="primary")
|
281 |
+
download_output = gr.File(label="Download Full Report")
|
282 |
+
|
283 |
+
prompt_template = """
|
284 |
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include:
|
285 |
- Clinical context (why the issue was missed or relevant details from the record).
|
286 |
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
|
|
301 |
Patient Record Excerpt (Chunk {0} of {1}):
|
302 |
{chunk}
|
303 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
def analyze(message: str, history: List[dict], files: List, max_chunks: int):
|
306 |
history.append({"role": "user", "content": message})
|
|
|
330 |
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
331 |
yield history, None
|
332 |
|
333 |
+
chunk_size = 1000 # Reduced for speed
|
334 |
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
335 |
chunks = chunks[:max_chunks] # Limit to max_chunks
|
336 |
total_chunks = len(chunks)
|
|
|
342 |
return
|
343 |
|
344 |
try:
|
345 |
+
# Sequential processing to avoid VLLM error
|
346 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
347 |
+
animation = ["🔍", "📊", "🧠", "🔎"][(int(time.time() * 2) % 4)]
|
348 |
+
history.append({"role": "assistant", "content": f"Analyzing chunk {chunk_idx}/{total_chunks}... {animation}"})
|
349 |
+
yield history, None
|
350 |
+
|
351 |
+
_, chunk_response = process_chunk(agent, chunk, chunk_idx, total_chunks, file_cache_dir, prompt_template)
|
352 |
+
combined_response += chunk_response
|
353 |
+
|
354 |
+
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
355 |
+
yield history, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
358 |
history[-1]["content"] = combined_response.strip()
|
|
|
366 |
yield history, report_path if report_path and os.path.exists(report_path) else None
|
367 |
|
368 |
except Exception as e:
|
369 |
+
logger.error(f"Analysis error: {e}")
|
370 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
371 |
yield history, None
|
372 |
|
|
|
375 |
return demo
|
376 |
|
377 |
if __name__ == "__main__":
|
378 |
+
logger.info("Launching app...")
|
379 |
agent = init_agent()
|
380 |
demo = create_ui(agent)
|
381 |
demo.queue(api_open=False).launch(
|