Update app.py
Browse files
app.py
CHANGED
@@ -47,6 +47,9 @@ def file_hash(path: str) -> str:
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
|
|
|
|
|
|
50 |
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
51 |
"""Extract text from a range of PDF pages."""
|
52 |
try:
|
@@ -68,17 +71,14 @@ def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
68 |
if total_pages == 0:
|
69 |
return ""
|
70 |
|
71 |
-
# Use 6 processes (adjust based on CPU cores)
|
72 |
num_processes = min(6, multiprocessing.cpu_count())
|
73 |
pages_per_process = max(1, total_pages // num_processes)
|
74 |
|
75 |
-
# Create page ranges for parallel processing
|
76 |
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
|
77 |
for i in range(num_processes)]
|
78 |
if ranges[-1][1] != total_pages:
|
79 |
ranges[-1] = (ranges[-1][0], total_pages)
|
80 |
|
81 |
-
# Process page ranges in parallel
|
82 |
with multiprocessing.Pool(processes=num_processes) as pool:
|
83 |
extract_func = partial(extract_page_range, file_path)
|
84 |
results = []
|
@@ -141,22 +141,17 @@ def log_system_usage(tag=""):
|
|
141 |
def clean_response(text: str) -> str:
|
142 |
"""Clean TxAgent response to group findings under tool-derived headings."""
|
143 |
text = sanitize_utf8(text)
|
144 |
-
# Remove tool call artifacts, None, and reasoning
|
145 |
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
146 |
-
# Remove extra whitespace and non-markdown content
|
147 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
148 |
-
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
|
149 |
|
150 |
-
# Define tool-to-heading mapping
|
151 |
tool_to_heading = {
|
152 |
"get_abuse_info_by_drug_name": "Drugs",
|
153 |
"get_dependence_info_by_drug_name": "Drugs",
|
154 |
"get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs",
|
155 |
"get_info_for_patients_by_drug_name": "Drugs",
|
156 |
-
# Add other tools from new_tool.json if applicable
|
157 |
}
|
158 |
|
159 |
-
# Parse sections and findings
|
160 |
sections = {}
|
161 |
current_section = None
|
162 |
current_tool = None
|
@@ -165,22 +160,18 @@ def clean_response(text: str) -> str:
|
|
165 |
line = line.strip()
|
166 |
if not line:
|
167 |
continue
|
168 |
-
# Detect tool tag
|
169 |
tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line)
|
170 |
if tool_match:
|
171 |
current_tool = tool_match.group(1)
|
172 |
continue
|
173 |
-
|
174 |
-
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
175 |
if section_match:
|
176 |
current_section = section_match.group(1)
|
177 |
if current_section not in sections:
|
178 |
sections[current_section] = []
|
179 |
continue
|
180 |
-
# Detect finding
|
181 |
finding_match = re.match(r"-\s*.+", line)
|
182 |
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
|
183 |
-
# Assign to tool-derived heading if tool is specified
|
184 |
if current_tool and current_tool in tool_to_heading:
|
185 |
heading = tool_to_heading[current_tool]
|
186 |
if heading not in sections:
|
@@ -189,15 +180,14 @@ def clean_response(text: str) -> str:
|
|
189 |
else:
|
190 |
sections[current_section].append(line)
|
191 |
|
192 |
-
# Combine non-empty sections
|
193 |
cleaned = []
|
194 |
for heading, findings in sections.items():
|
195 |
-
if findings:
|
196 |
cleaned.append(f"### {heading}\n" + "\n".join(findings))
|
197 |
|
198 |
text = "\n\n".join(cleaned).strip()
|
199 |
if not text:
|
200 |
-
text = ""
|
201 |
return text
|
202 |
|
203 |
def init_agent():
|
@@ -214,7 +204,7 @@ def init_agent():
|
|
214 |
tool_files_dict={"new_tool": target_tool_path},
|
215 |
force_finish=True,
|
216 |
enable_checker=True,
|
217 |
-
step_rag_num=
|
218 |
seed=100,
|
219 |
additional_default_tools=[],
|
220 |
)
|
@@ -223,16 +213,77 @@ def init_agent():
|
|
223 |
print("✅ Agent Ready")
|
224 |
return agent
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
def create_ui(agent):
|
227 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
228 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
229 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
230 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
|
|
231 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
232 |
send_btn = gr.Button("Analyze", variant="primary")
|
233 |
download_output = gr.File(label="Download Full Report")
|
234 |
|
235 |
-
def analyze(message: str, history: List[dict], files: List):
|
236 |
history.append({"role": "user", "content": message})
|
237 |
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
|
238 |
yield history, None
|
@@ -240,7 +291,6 @@ def create_ui(agent):
|
|
240 |
extracted = ""
|
241 |
file_hash_value = ""
|
242 |
if files:
|
243 |
-
# Progress callback for extraction
|
244 |
total_pages = 0
|
245 |
processed_pages = 0
|
246 |
def update_extraction_progress(current, total):
|
@@ -257,94 +307,46 @@ def create_ui(agent):
|
|
257 |
extracted = "\n".join(results)
|
258 |
file_hash_value = file_hash(files[0].name) if files else ""
|
259 |
|
260 |
-
history.pop()
|
261 |
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
262 |
yield history, None
|
263 |
|
264 |
-
|
265 |
-
chunk_size = 6000
|
266 |
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
|
|
|
|
267 |
combined_response = ""
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
|
274 |
-
Output ONLY the markdown-formatted findings, with bullet points under each heading. Precede each finding with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]) to indicate the tool used. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found for a tool or category, state "No issues identified" for that section. Ensure the output is specific to the provided text and avoids generic responses.
|
275 |
-
|
276 |
-
Example Output:
|
277 |
-
### Drugs
|
278 |
-
[TOOL: get_abuse_info_by_drug_name]
|
279 |
-
- Opioid use disorder not addressed. Missed due to lack of screening. Risks: overdose. Recommend: addiction specialist referral.
|
280 |
-
### Missed Diagnoses
|
281 |
-
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
|
282 |
-
### Incomplete Assessments
|
283 |
-
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
|
284 |
-
### Urgent Follow-up
|
285 |
-
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
|
286 |
-
|
287 |
-
Patient Record Excerpt (Chunk {0} of {1}):
|
288 |
-
{chunk}
|
289 |
-
"""
|
290 |
|
291 |
try:
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
continue
|
312 |
-
if isinstance(chunk_output, list):
|
313 |
-
for m in chunk_output:
|
314 |
-
if hasattr(m, 'content') and m.content:
|
315 |
-
cleaned = clean_response(m.content)
|
316 |
-
if cleaned and re.search(r"###\s*\w+", cleaned):
|
317 |
-
chunk_response += cleaned + "\n\n"
|
318 |
-
# Update UI with partial response
|
319 |
-
if history[-1]["content"].startswith("Analyzing"):
|
320 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
321 |
-
else:
|
322 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
323 |
-
yield history, None
|
324 |
-
elif isinstance(chunk_output, str) and chunk_output.strip():
|
325 |
-
cleaned = clean_response(chunk_output)
|
326 |
-
if cleaned and re.search(r"###\s*\w+", cleaned):
|
327 |
-
chunk_response += cleaned + "\n\n"
|
328 |
-
# Update UI with partial response
|
329 |
-
if history[-1]["content"].startswith("Analyzing"):
|
330 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
331 |
-
else:
|
332 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
333 |
-
yield history, None
|
334 |
-
|
335 |
-
# Append completed chunk response to combined response
|
336 |
-
if chunk_response:
|
337 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
338 |
-
else:
|
339 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
340 |
-
|
341 |
-
# Finalize UI with complete response
|
342 |
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
343 |
history[-1]["content"] = combined_response.strip()
|
344 |
else:
|
345 |
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
346 |
|
347 |
-
# Generate report file
|
348 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
349 |
if report_path:
|
350 |
with open(report_path, "w", encoding="utf-8") as f:
|
@@ -356,8 +358,8 @@ Patient Record Excerpt (Chunk {0} of {1}):
|
|
356 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
357 |
yield history, None
|
358 |
|
359 |
-
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
360 |
-
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
361 |
return demo
|
362 |
|
363 |
if __name__ == "__main__":
|
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
50 |
+
def chunk_hash(chunk: str) -> str:
|
51 |
+
return hashlib.md5(chunk.encode("utf-8")).hexdigest()
|
52 |
+
|
53 |
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
54 |
"""Extract text from a range of PDF pages."""
|
55 |
try:
|
|
|
71 |
if total_pages == 0:
|
72 |
return ""
|
73 |
|
|
|
74 |
num_processes = min(6, multiprocessing.cpu_count())
|
75 |
pages_per_process = max(1, total_pages // num_processes)
|
76 |
|
|
|
77 |
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
|
78 |
for i in range(num_processes)]
|
79 |
if ranges[-1][1] != total_pages:
|
80 |
ranges[-1] = (ranges[-1][0], total_pages)
|
81 |
|
|
|
82 |
with multiprocessing.Pool(processes=num_processes) as pool:
|
83 |
extract_func = partial(extract_page_range, file_path)
|
84 |
results = []
|
|
|
141 |
def clean_response(text: str) -> str:
|
142 |
"""Clean TxAgent response to group findings under tool-derived headings."""
|
143 |
text = sanitize_utf8(text)
|
|
|
144 |
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
|
|
145 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
146 |
+
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
|
147 |
|
|
|
148 |
tool_to_heading = {
|
149 |
"get_abuse_info_by_drug_name": "Drugs",
|
150 |
"get_dependence_info_by_drug_name": "Drugs",
|
151 |
"get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs",
|
152 |
"get_info_for_patients_by_drug_name": "Drugs",
|
|
|
153 |
}
|
154 |
|
|
|
155 |
sections = {}
|
156 |
current_section = None
|
157 |
current_tool = None
|
|
|
160 |
line = line.strip()
|
161 |
if not line:
|
162 |
continue
|
|
|
163 |
tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line)
|
164 |
if tool_match:
|
165 |
current_tool = tool_match.group(1)
|
166 |
continue
|
167 |
+
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up|Drugs)", line)
|
|
|
168 |
if section_match:
|
169 |
current_section = section_match.group(1)
|
170 |
if current_section not in sections:
|
171 |
sections[current_section] = []
|
172 |
continue
|
|
|
173 |
finding_match = re.match(r"-\s*.+", line)
|
174 |
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
|
|
|
175 |
if current_tool and current_tool in tool_to_heading:
|
176 |
heading = tool_to_heading[current_tool]
|
177 |
if heading not in sections:
|
|
|
180 |
else:
|
181 |
sections[current_section].append(line)
|
182 |
|
|
|
183 |
cleaned = []
|
184 |
for heading, findings in sections.items():
|
185 |
+
if findings:
|
186 |
cleaned.append(f"### {heading}\n" + "\n".join(findings))
|
187 |
|
188 |
text = "\n\n".join(cleaned).strip()
|
189 |
if not text:
|
190 |
+
text = ""
|
191 |
return text
|
192 |
|
193 |
def init_agent():
|
|
|
204 |
tool_files_dict={"new_tool": target_tool_path},
|
205 |
force_finish=True,
|
206 |
enable_checker=True,
|
207 |
+
step_rag_num=2, # Reduced for speed
|
208 |
seed=100,
|
209 |
additional_default_tools=[],
|
210 |
)
|
|
|
213 |
print("✅ Agent Ready")
|
214 |
return agent
|
215 |
|
216 |
+
def process_chunk(agent, chunk: str, chunk_idx: int, total_chunks: int, cache_path: str) -> str:
|
217 |
+
"""Process a single chunk and cache the result."""
|
218 |
+
chunk_id = chunk_hash(chunk)
|
219 |
+
chunk_cache_path = os.path.join(file_cache_dir, f"chunk_{chunk_id}.txt")
|
220 |
+
|
221 |
+
if os.path.exists(chunk_cache_path):
|
222 |
+
with open(chunk_cache_path, "r", encoding="utf-8") as f:
|
223 |
+
return f.read()
|
224 |
+
|
225 |
+
prompt_template = """
|
226 |
+
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include:
|
227 |
+
- Clinical context (why the issue was missed or relevant details from the record).
|
228 |
+
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
229 |
+
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
|
230 |
+
Output ONLY the markdown-formatted findings, with bullet points under each heading. Precede each finding with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]) to indicate the tool used. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found for a tool or category, state "No issues identified" for that section. Ensure the output is specific to the provided text and avoids generic responses.
|
231 |
+
|
232 |
+
Example Output:
|
233 |
+
### Drugs
|
234 |
+
[TOOL: get_abuse_info_by_drug_name]
|
235 |
+
- [Finding placeholder for drug-related issue]
|
236 |
+
### Missed Diagnoses
|
237 |
+
- [Finding placeholder for missed diagnosis]
|
238 |
+
### Incomplete Assessments
|
239 |
+
- [Finding placeholder for incomplete assessment]
|
240 |
+
### Urgent Follow-up
|
241 |
+
- [Finding placeholder for urgent follow-up]
|
242 |
+
|
243 |
+
Patient Record Excerpt (Chunk {0} of {1}):
|
244 |
+
{chunk}
|
245 |
+
"""
|
246 |
+
prompt = prompt_template.format(chunk_idx, total_chunks, chunk=chunk[:2000]) # Truncate to avoid token limits
|
247 |
+
chunk_response = ""
|
248 |
+
|
249 |
+
for chunk_output in agent.run_gradio_chat(
|
250 |
+
message=prompt,
|
251 |
+
history=[],
|
252 |
+
temperature=0.2,
|
253 |
+
max_new_tokens=512, # Reduced for speed
|
254 |
+
max_token=2048, # Reduced for speed
|
255 |
+
call_agent=False,
|
256 |
+
conversation=[],
|
257 |
+
):
|
258 |
+
if chunk_output is None:
|
259 |
+
continue
|
260 |
+
if isinstance(chunk_output, list):
|
261 |
+
for m in chunk_output:
|
262 |
+
if hasattr(m, 'content') and m.content:
|
263 |
+
cleaned = clean_response(m.content)
|
264 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
265 |
+
chunk_response += cleaned + "\n\n"
|
266 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
267 |
+
cleaned = clean_response(chunk_output)
|
268 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
269 |
+
chunk_response += cleaned + "\n\n"
|
270 |
+
|
271 |
+
if chunk_response:
|
272 |
+
with open(chunk_cache_path, "w", encoding="utf-8") as f:
|
273 |
+
f.write(chunk_response)
|
274 |
+
return chunk_response
|
275 |
+
|
276 |
def create_ui(agent):
|
277 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
278 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
279 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
280 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
281 |
+
max_chunks_input = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Max Chunks to Analyze")
|
282 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
283 |
send_btn = gr.Button("Analyze", variant="primary")
|
284 |
download_output = gr.File(label="Download Full Report")
|
285 |
|
286 |
+
def analyze(message: str, history: List[dict], files: List, max_chunks: int):
|
287 |
history.append({"role": "user", "content": message})
|
288 |
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
|
289 |
yield history, None
|
|
|
291 |
extracted = ""
|
292 |
file_hash_value = ""
|
293 |
if files:
|
|
|
294 |
total_pages = 0
|
295 |
processed_pages = 0
|
296 |
def update_extraction_progress(current, total):
|
|
|
307 |
extracted = "\n".join(results)
|
308 |
file_hash_value = file_hash(files[0].name) if files else ""
|
309 |
|
310 |
+
history.pop()
|
311 |
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
312 |
yield history, None
|
313 |
|
314 |
+
chunk_size = 2000 # Reduced for speed
|
|
|
315 |
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
316 |
+
chunks = chunks[:max_chunks] # Limit to max_chunks
|
317 |
+
total_chunks = len(chunks)
|
318 |
combined_response = ""
|
319 |
|
320 |
+
if not chunks:
|
321 |
+
history.append({"role": "assistant", "content": "No content to analyze."})
|
322 |
+
yield history, None
|
323 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
try:
|
326 |
+
with ThreadPoolExecutor(max_workers=4) as executor: # Parallel processing
|
327 |
+
futures = []
|
328 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
329 |
+
futures.append(executor.submit(process_chunk, agent, chunk, chunk_idx, total_chunks, file_cache_dir))
|
330 |
+
|
331 |
+
for idx, future in enumerate(as_completed(futures)):
|
332 |
+
chunk_response = future.result()
|
333 |
+
animation = ["🔍", "📊", "🧠", "🔎"][(int(time.time() * 2) % 4)]
|
334 |
+
history.append({"role": "assistant", "content": f"Analyzing chunks... {animation} {idx + 1}/{total_chunks}"})
|
335 |
+
yield history, None
|
336 |
+
|
337 |
+
if chunk_response:
|
338 |
+
combined_response += f"--- Analysis for Chunk {idx + 1} ---\n{chunk_response}\n"
|
339 |
+
else:
|
340 |
+
combined_response += f"--- Analysis for Chunk {idx + 1} ---\nNo oversights identified for this chunk.\n\n"
|
341 |
+
|
342 |
+
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
343 |
+
yield history, None
|
344 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
346 |
history[-1]["content"] = combined_response.strip()
|
347 |
else:
|
348 |
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
349 |
|
|
|
350 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
351 |
if report_path:
|
352 |
with open(report_path, "w", encoding="utf-8") as f:
|
|
|
358 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
359 |
yield history, None
|
360 |
|
361 |
+
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload, max_chunks_input], outputs=[chatbot, download_output])
|
362 |
+
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload, max_chunks_input], outputs=[chatbot, download_output])
|
363 |
return demo
|
364 |
|
365 |
if __name__ == "__main__":
|