Update app.py
Browse files
app.py
CHANGED
@@ -14,11 +14,6 @@ import subprocess
|
|
14 |
import multiprocessing
|
15 |
from functools import partial
|
16 |
import time
|
17 |
-
import logging
|
18 |
-
|
19 |
-
# Setup logging
|
20 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", filename="/home/user/clinical_oversight_analyzer.log")
|
21 |
-
logger = logging.getLogger(__name__)
|
22 |
|
23 |
# Persistent directory
|
24 |
persistent_dir = "/data/hf_cache"
|
@@ -34,12 +29,10 @@ for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, v
|
|
34 |
os.makedirs(directory, exist_ok=True)
|
35 |
|
36 |
os.environ["HF_HOME"] = model_cache_dir
|
|
|
37 |
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
38 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
39 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
40 |
-
# Remove TRANSFORMERS_CACHE to suppress warning
|
41 |
-
if "TRANSFORMERS_CACHE" in os.environ:
|
42 |
-
del os.environ["TRANSFORMERS_CACHE"]
|
43 |
|
44 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
45 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
@@ -54,9 +47,6 @@ def file_hash(path: str) -> str:
|
|
54 |
with open(path, "rb") as f:
|
55 |
return hashlib.md5(f.read()).hexdigest()
|
56 |
|
57 |
-
def batch_hash(chunks: List[str], prompt: str) -> str:
|
58 |
-
return hashlib.md5(("".join(chunks) + prompt).encode("utf-8")).hexdigest()
|
59 |
-
|
60 |
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
61 |
"""Extract text from a range of PDF pages."""
|
62 |
try:
|
@@ -66,8 +56,7 @@ def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
|
66 |
page_text = page.extract_text() or ""
|
67 |
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
|
68 |
return "\n\n".join(text_chunks)
|
69 |
-
except Exception
|
70 |
-
logger.error(f"Error extracting pages {start_page}-{end_page}: {e}")
|
71 |
return ""
|
72 |
|
73 |
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
@@ -79,14 +68,17 @@ def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
79 |
if total_pages == 0:
|
80 |
return ""
|
81 |
|
|
|
82 |
num_processes = min(6, multiprocessing.cpu_count())
|
83 |
pages_per_process = max(1, total_pages // num_processes)
|
84 |
|
|
|
85 |
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
|
86 |
for i in range(num_processes)]
|
87 |
if ranges[-1][1] != total_pages:
|
88 |
ranges[-1] = (ranges[-1][0], total_pages)
|
89 |
|
|
|
90 |
with multiprocessing.Pool(processes=num_processes) as pool:
|
91 |
extract_func = partial(extract_page_range, file_path)
|
92 |
results = []
|
@@ -98,7 +90,6 @@ def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
98 |
|
99 |
return "\n\n".join(filter(None, results))
|
100 |
except Exception as e:
|
101 |
-
logger.error(f"PDF processing error: {e}")
|
102 |
return f"PDF processing error: {str(e)}"
|
103 |
|
104 |
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
|
@@ -130,61 +121,87 @@ def convert_file_to_json(file_path: str, file_type: str, progress_callback=None)
|
|
130 |
f.write(result)
|
131 |
return result
|
132 |
except Exception as e:
|
133 |
-
logger.error(f"Error processing {file_path}: {e}")
|
134 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
135 |
|
136 |
def log_system_usage(tag=""):
|
137 |
try:
|
138 |
cpu = psutil.cpu_percent(interval=1)
|
139 |
mem = psutil.virtual_memory()
|
140 |
-
|
141 |
result = subprocess.run(
|
142 |
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
143 |
capture_output=True, text=True
|
144 |
)
|
145 |
if result.returncode == 0:
|
146 |
used, total, util = result.stdout.strip().split(", ")
|
147 |
-
|
148 |
except Exception as e:
|
149 |
-
|
150 |
|
151 |
def clean_response(text: str) -> str:
|
152 |
-
"""Clean TxAgent response to group findings
|
153 |
text = sanitize_utf8(text)
|
154 |
-
# Remove tool
|
155 |
-
text = re.sub(r"\[
|
|
|
156 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
157 |
-
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
sections = {}
|
160 |
current_section = None
|
|
|
161 |
lines = text.splitlines()
|
162 |
for line in lines:
|
163 |
line = line.strip()
|
164 |
if not line:
|
165 |
continue
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
if section_match:
|
168 |
current_section = section_match.group(1)
|
169 |
if current_section not in sections:
|
170 |
sections[current_section] = []
|
171 |
continue
|
|
|
172 |
finding_match = re.match(r"-\s*.+", line)
|
173 |
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
|
|
176 |
cleaned = []
|
177 |
for heading, findings in sections.items():
|
178 |
-
if findings:
|
179 |
cleaned.append(f"### {heading}\n" + "\n".join(findings))
|
180 |
|
181 |
text = "\n\n".join(cleaned).strip()
|
182 |
if not text:
|
183 |
-
text = ""
|
184 |
return text
|
185 |
|
186 |
def init_agent():
|
187 |
-
|
188 |
log_system_usage("Before Load")
|
189 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
190 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
@@ -197,67 +214,15 @@ def init_agent():
|
|
197 |
tool_files_dict={"new_tool": target_tool_path},
|
198 |
force_finish=True,
|
199 |
enable_checker=True,
|
200 |
-
step_rag_num=
|
201 |
seed=100,
|
202 |
additional_default_tools=[],
|
203 |
)
|
204 |
agent.init_model()
|
205 |
log_system_usage("After Load")
|
206 |
-
|
207 |
return agent
|
208 |
|
209 |
-
def process_batch(agent, chunks: List[str], cache_path: str, prompt_template: str) -> str:
|
210 |
-
"""Process a batch of chunks in a single prompt."""
|
211 |
-
if not any(chunk.strip() for chunk in chunks):
|
212 |
-
logger.warning("All chunks are empty, skipping analysis...")
|
213 |
-
return "No oversights identified in the provided records."
|
214 |
-
|
215 |
-
batch_id = batch_hash(chunks, prompt_template)
|
216 |
-
batch_cache_path = os.path.join(cache_path, f"batch_{batch_id}.txt")
|
217 |
-
|
218 |
-
if os.path.exists(batch_cache_path):
|
219 |
-
with open(batch_cache_path, "r", encoding="utf-8") as f:
|
220 |
-
logger.info("Cache hit for batch")
|
221 |
-
return f.read()
|
222 |
-
|
223 |
-
# Combine chunks into one prompt
|
224 |
-
chunk_texts = [f"Chunk {i+1}:\n{chunk[:500]}" for i, chunk in enumerate(chunks) if chunk.strip()]
|
225 |
-
combined_text = "\n\n".join(chunk_texts)
|
226 |
-
prompt = prompt_template.format(chunks=combined_text)
|
227 |
-
response = ""
|
228 |
-
|
229 |
-
try:
|
230 |
-
for output in agent.run_gradio_chat(
|
231 |
-
message=prompt,
|
232 |
-
history=[],
|
233 |
-
temperature=0.2,
|
234 |
-
max_new_tokens=256,
|
235 |
-
max_token=1024,
|
236 |
-
call_agent=False,
|
237 |
-
conversation=[],
|
238 |
-
):
|
239 |
-
if output is None:
|
240 |
-
continue
|
241 |
-
if isinstance(output, list):
|
242 |
-
for m in output:
|
243 |
-
if hasattr(m, 'content') and m.content:
|
244 |
-
cleaned = clean_response(m.content)
|
245 |
-
if cleaned and re.search(r"###\s*\w+", cleaned):
|
246 |
-
response += cleaned + "\n\n"
|
247 |
-
elif isinstance(output, str) and output.strip():
|
248 |
-
cleaned = clean_response(output)
|
249 |
-
if cleaned and re.search(r"###\s*\w+", cleaned):
|
250 |
-
response += cleaned + "\n\n"
|
251 |
-
except Exception as e:
|
252 |
-
logger.error(f"Error processing batch: {e}")
|
253 |
-
return f"Error occurred: {str(e)}"
|
254 |
-
|
255 |
-
if response:
|
256 |
-
with open(batch_cache_path, "w", encoding="utf-8") as f:
|
257 |
-
f.write(response)
|
258 |
-
return response
|
259 |
-
return "No oversights identified in the provided records."
|
260 |
-
|
261 |
def create_ui(agent):
|
262 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
263 |
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
|
@@ -267,27 +232,6 @@ def create_ui(agent):
|
|
267 |
send_btn = gr.Button("Analyze", variant="primary")
|
268 |
download_output = gr.File(label="Download Full Report")
|
269 |
|
270 |
-
prompt_template = """
|
271 |
-
You are a medical analysis assistant. Analyze the following patient record excerpts for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under the following headings: 'Drugs', 'Missed Diagnoses', 'Medication Conflicts', 'Incomplete Assessments', 'Urgent Follow-up'. For each finding, include:
|
272 |
-
- Clinical context (why the issue was missed or relevant details from the record).
|
273 |
-
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
274 |
-
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
|
275 |
-
Output ONLY the markdown-formatted findings, with bullet points under each heading. Do NOT include tool references, reasoning, or intermediate steps. If no issues are found for a section, omit that section. Ensure the output is specific to the provided text and avoids generic responses.
|
276 |
-
|
277 |
-
Example Output:
|
278 |
-
### Drugs
|
279 |
-
- Opioid use disorder not addressed. Missed due to lack of screening. Risks: overdose. Recommend: addiction specialist referral.
|
280 |
-
### Missed Diagnoses
|
281 |
-
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
|
282 |
-
### Incomplete Assessments
|
283 |
-
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
|
284 |
-
### Urgent Follow-up
|
285 |
-
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
|
286 |
-
|
287 |
-
Patient Record Excerpts:
|
288 |
-
{chunks}
|
289 |
-
"""
|
290 |
-
|
291 |
def analyze(message: str, history: List[dict], files: List):
|
292 |
history.append({"role": "user", "content": message})
|
293 |
history.append({"role": "assistant", "content": "β³ Extracting text from files..."})
|
@@ -296,6 +240,7 @@ Patient Record Excerpts:
|
|
296 |
extracted = ""
|
297 |
file_hash_value = ""
|
298 |
if files:
|
|
|
299 |
total_pages = 0
|
300 |
processed_pages = 0
|
301 |
def update_extraction_progress(current, total):
|
@@ -312,36 +257,102 @@ Patient Record Excerpts:
|
|
312 |
extracted = "\n".join(results)
|
313 |
file_hash_value = file_hash(files[0].name) if files else ""
|
314 |
|
315 |
-
history.pop()
|
316 |
history.append({"role": "assistant", "content": "β
Text extraction complete."})
|
317 |
yield history, None
|
318 |
|
319 |
-
|
320 |
-
|
321 |
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
322 |
-
|
323 |
-
if not chunks:
|
324 |
-
history.append({"role": "assistant", "content": "No content to analyze."})
|
325 |
-
yield history, None
|
326 |
-
return
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
338 |
-
if report_path
|
339 |
with open(report_path, "w", encoding="utf-8") as f:
|
340 |
-
f.write(
|
341 |
yield history, report_path if report_path and os.path.exists(report_path) else None
|
342 |
|
343 |
except Exception as e:
|
344 |
-
|
345 |
history.append({"role": "assistant", "content": f"β Error occurred: {str(e)}"})
|
346 |
yield history, None
|
347 |
|
@@ -350,7 +361,7 @@ Patient Record Excerpts:
|
|
350 |
return demo
|
351 |
|
352 |
if __name__ == "__main__":
|
353 |
-
|
354 |
agent = init_agent()
|
355 |
demo = create_ui(agent)
|
356 |
demo.queue(api_open=False).launch(
|
|
|
14 |
import multiprocessing
|
15 |
from functools import partial
|
16 |
import time
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Persistent directory
|
19 |
persistent_dir = "/data/hf_cache"
|
|
|
29 |
os.makedirs(directory, exist_ok=True)
|
30 |
|
31 |
os.environ["HF_HOME"] = model_cache_dir
|
32 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
33 |
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
34 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
35 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
|
|
|
|
|
|
36 |
|
37 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
38 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
|
|
|
|
|
|
50 |
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
51 |
"""Extract text from a range of PDF pages."""
|
52 |
try:
|
|
|
56 |
page_text = page.extract_text() or ""
|
57 |
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
|
58 |
return "\n\n".join(text_chunks)
|
59 |
+
except Exception:
|
|
|
60 |
return ""
|
61 |
|
62 |
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
|
|
68 |
if total_pages == 0:
|
69 |
return ""
|
70 |
|
71 |
+
# Use 6 processes (adjust based on CPU cores)
|
72 |
num_processes = min(6, multiprocessing.cpu_count())
|
73 |
pages_per_process = max(1, total_pages // num_processes)
|
74 |
|
75 |
+
# Create page ranges for parallel processing
|
76 |
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
|
77 |
for i in range(num_processes)]
|
78 |
if ranges[-1][1] != total_pages:
|
79 |
ranges[-1] = (ranges[-1][0], total_pages)
|
80 |
|
81 |
+
# Process page ranges in parallel
|
82 |
with multiprocessing.Pool(processes=num_processes) as pool:
|
83 |
extract_func = partial(extract_page_range, file_path)
|
84 |
results = []
|
|
|
90 |
|
91 |
return "\n\n".join(filter(None, results))
|
92 |
except Exception as e:
|
|
|
93 |
return f"PDF processing error: {str(e)}"
|
94 |
|
95 |
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
|
|
|
121 |
f.write(result)
|
122 |
return result
|
123 |
except Exception as e:
|
|
|
124 |
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
125 |
|
126 |
def log_system_usage(tag=""):
|
127 |
try:
|
128 |
cpu = psutil.cpu_percent(interval=1)
|
129 |
mem = psutil.virtual_memory()
|
130 |
+
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
131 |
result = subprocess.run(
|
132 |
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
133 |
capture_output=True, text=True
|
134 |
)
|
135 |
if result.returncode == 0:
|
136 |
used, total, util = result.stdout.strip().split(", ")
|
137 |
+
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
138 |
except Exception as e:
|
139 |
+
print(f"[{tag}] GPU/CPU monitor failed: {e}")
|
140 |
|
141 |
def clean_response(text: str) -> str:
|
142 |
+
"""Clean TxAgent response to group findings under tool-derived headings."""
|
143 |
text = sanitize_utf8(text)
|
144 |
+
# Remove tool call artifacts, None, and reasoning
|
145 |
+
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
146 |
+
# Remove extra whitespace and non-markdown content
|
147 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
148 |
+
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) # Keep markdown-relevant characters
|
149 |
+
|
150 |
+
# Define tool-to-heading mapping
|
151 |
+
tool_to_heading = {
|
152 |
+
"get_abuse_info_by_drug_name": "Drugs",
|
153 |
+
"get_dependence_info_by_drug_name": "Drugs",
|
154 |
+
"get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs",
|
155 |
+
"get_info_for_patients_by_drug_name": "Drugs",
|
156 |
+
# Add other tools from new_tool.json if applicable
|
157 |
+
}
|
158 |
+
|
159 |
+
# Parse sections and findings
|
160 |
sections = {}
|
161 |
current_section = None
|
162 |
+
current_tool = None
|
163 |
lines = text.splitlines()
|
164 |
for line in lines:
|
165 |
line = line.strip()
|
166 |
if not line:
|
167 |
continue
|
168 |
+
# Detect tool tag
|
169 |
+
tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line)
|
170 |
+
if tool_match:
|
171 |
+
current_tool = tool_match.group(1)
|
172 |
+
continue
|
173 |
+
# Detect section heading
|
174 |
+
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
175 |
if section_match:
|
176 |
current_section = section_match.group(1)
|
177 |
if current_section not in sections:
|
178 |
sections[current_section] = []
|
179 |
continue
|
180 |
+
# Detect finding
|
181 |
finding_match = re.match(r"-\s*.+", line)
|
182 |
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
|
183 |
+
# Assign to tool-derived heading if tool is specified
|
184 |
+
if current_tool and current_tool in tool_to_heading:
|
185 |
+
heading = tool_to_heading[current_tool]
|
186 |
+
if heading not in sections:
|
187 |
+
sections[heading] = []
|
188 |
+
sections[heading].append(line)
|
189 |
+
else:
|
190 |
+
sections[current_section].append(line)
|
191 |
|
192 |
+
# Combine non-empty sections
|
193 |
cleaned = []
|
194 |
for heading, findings in sections.items():
|
195 |
+
if findings: # Only include sections with findings
|
196 |
cleaned.append(f"### {heading}\n" + "\n".join(findings))
|
197 |
|
198 |
text = "\n\n".join(cleaned).strip()
|
199 |
if not text:
|
200 |
+
text = "" # Return empty string if no valid findings
|
201 |
return text
|
202 |
|
203 |
def init_agent():
|
204 |
+
print("π Initializing model...")
|
205 |
log_system_usage("Before Load")
|
206 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
207 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
|
|
214 |
tool_files_dict={"new_tool": target_tool_path},
|
215 |
force_finish=True,
|
216 |
enable_checker=True,
|
217 |
+
step_rag_num=4,
|
218 |
seed=100,
|
219 |
additional_default_tools=[],
|
220 |
)
|
221 |
agent.init_model()
|
222 |
log_system_usage("After Load")
|
223 |
+
print("β
Agent Ready")
|
224 |
return agent
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
def create_ui(agent):
|
227 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
228 |
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
|
|
|
232 |
send_btn = gr.Button("Analyze", variant="primary")
|
233 |
download_output = gr.File(label="Download Full Report")
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
def analyze(message: str, history: List[dict], files: List):
|
236 |
history.append({"role": "user", "content": message})
|
237 |
history.append({"role": "assistant", "content": "β³ Extracting text from files..."})
|
|
|
240 |
extracted = ""
|
241 |
file_hash_value = ""
|
242 |
if files:
|
243 |
+
# Progress callback for extraction
|
244 |
total_pages = 0
|
245 |
processed_pages = 0
|
246 |
def update_extraction_progress(current, total):
|
|
|
257 |
extracted = "\n".join(results)
|
258 |
file_hash_value = file_hash(files[0].name) if files else ""
|
259 |
|
260 |
+
history.pop() # Remove extraction message
|
261 |
history.append({"role": "assistant", "content": "β
Text extraction complete."})
|
262 |
yield history, None
|
263 |
|
264 |
+
# Split extracted text into chunks of ~6,000 characters
|
265 |
+
chunk_size = 6000
|
266 |
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
267 |
+
combined_response = ""
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
prompt_template = """
|
270 |
+
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include:
|
271 |
+
- Clinical context (why the issue was missed or relevant details from the record).
|
272 |
+
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
273 |
+
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
|
274 |
+
Output ONLY the markdown-formatted findings, with bullet points under each heading. Precede each finding with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]) to indicate the tool used. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found for a tool or category, state "No issues identified" for that section. Ensure the output is specific to the provided text and avoids generic responses.
|
275 |
|
276 |
+
Example Output:
|
277 |
+
### Drugs
|
278 |
+
[TOOL: get_abuse_info_by_drug_name]
|
279 |
+
- Opioid use disorder not addressed. Missed due to lack of screening. Risks: overdose. Recommend: addiction specialist referral.
|
280 |
+
### Missed Diagnoses
|
281 |
+
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
|
282 |
+
### Incomplete Assessments
|
283 |
+
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
|
284 |
+
### Urgent Follow-up
|
285 |
+
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
|
286 |
|
287 |
+
Patient Record Excerpt (Chunk {0} of {1}):
|
288 |
+
{chunk}
|
289 |
+
"""
|
290 |
+
|
291 |
+
try:
|
292 |
+
# Process each chunk and stream results in real-time
|
293 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
294 |
+
# Update UI with chunk progress
|
295 |
+
animation = ["π", "π", "π§ ", "π"][(int(time.time() * 2) % 4)]
|
296 |
+
history.append({"role": "assistant", "content": f"Analyzing records... {animation} Chunk {chunk_idx}/{len(chunks)}"})
|
297 |
+
yield history, None
|
298 |
+
|
299 |
+
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk[:4000]) # Truncate to avoid token limits
|
300 |
+
chunk_response = ""
|
301 |
+
for chunk_output in agent.run_gradio_chat(
|
302 |
+
message=prompt,
|
303 |
+
history=[],
|
304 |
+
temperature=0.2,
|
305 |
+
max_new_tokens=1024,
|
306 |
+
max_token=4096,
|
307 |
+
call_agent=False,
|
308 |
+
conversation=[],
|
309 |
+
):
|
310 |
+
if chunk_output is None:
|
311 |
+
continue
|
312 |
+
if isinstance(chunk_output, list):
|
313 |
+
for m in chunk_output:
|
314 |
+
if hasattr(m, 'content') and m.content:
|
315 |
+
cleaned = clean_response(m.content)
|
316 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
317 |
+
chunk_response += cleaned + "\n\n"
|
318 |
+
# Update UI with partial response
|
319 |
+
if history[-1]["content"].startswith("Analyzing"):
|
320 |
+
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
321 |
+
else:
|
322 |
+
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
323 |
+
yield history, None
|
324 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
325 |
+
cleaned = clean_response(chunk_output)
|
326 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
327 |
+
chunk_response += cleaned + "\n\n"
|
328 |
+
# Update UI with partial response
|
329 |
+
if history[-1]["content"].startswith("Analyzing"):
|
330 |
+
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
331 |
+
else:
|
332 |
+
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
333 |
+
yield history, None
|
334 |
+
|
335 |
+
# Append completed chunk response to combined response
|
336 |
+
if chunk_response:
|
337 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
338 |
+
else:
|
339 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
340 |
+
|
341 |
+
# Finalize UI with complete response
|
342 |
+
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
343 |
+
history[-1]["content"] = combined_response.strip()
|
344 |
+
else:
|
345 |
+
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
346 |
+
|
347 |
+
# Generate report file
|
348 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
349 |
+
if report_path:
|
350 |
with open(report_path, "w", encoding="utf-8") as f:
|
351 |
+
f.write(combined_response)
|
352 |
yield history, report_path if report_path and os.path.exists(report_path) else None
|
353 |
|
354 |
except Exception as e:
|
355 |
+
print("π¨ ERROR:", e)
|
356 |
history.append({"role": "assistant", "content": f"β Error occurred: {str(e)}"})
|
357 |
yield history, None
|
358 |
|
|
|
361 |
return demo
|
362 |
|
363 |
if __name__ == "__main__":
|
364 |
+
print("π Launching app...")
|
365 |
agent = init_agent()
|
366 |
demo = create_ui(agent)
|
367 |
demo.queue(api_open=False).launch(
|