File size: 3,621 Bytes
c513221
109adde
9da79fd
5e2c7ed
 
 
d9a5760
b85438c
d9a5760
 
 
 
 
86743ba
d9a5760
3b7350e
d9a5760
3b7350e
d9a5760
3b7350e
 
 
 
 
 
 
 
 
109adde
3b7350e
 
109adde
3b7350e
 
 
 
109adde
d26a101
cfeca25
109adde
690f094
109adde
690f094
 
c7f120b
3a80045
690f094
 
bdf16c0
d9a5760
 
 
 
 
c7f120b
cfeca25
c7f120b
690f094
081cd9c
5e2c7ed
a04441d
109adde
 
 
 
 
 
 
 
 
 
081cd9c
690f094
bdf16c0
690f094
 
 
 
 
bdf16c0
 
 
f466dd9
c7f120b
c14304d
c7f120b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import asyncio
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
from multiprocessing import Pool, current_process

def load_model():
    print(f"Loading model in process {current_process().name}")
    model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
    print(f"Model loaded in process {current_process().name}")
    return model

def generate_image(prompt, prompt_name):
    try:
        model = load_model()
        print(f"Generating response for {prompt_name} with prompt: {prompt}")
        output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
        print(f"Output for {prompt_name}: {output}")

        if isinstance(output.images, list) and len(output.images) > 0:
            image = output.images[0]
            buffered = BytesIO()
            try:
                image.save(buffered, format="JPEG")
                image_bytes = buffered.getvalue()
                print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
                return image_bytes
            except Exception as e:
                print(f"Error saving image for {prompt_name}: {e}")
                return None
        else:
            raise Exception(f"No images returned by the model for {prompt_name}.")
    except Exception as e:
        print(f"Error generating image for {prompt_name}: {e}")
        return None

async def queue_api_calls(sentence_mapping, character_dict, selected_style):
    print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
    prompts = []

    for paragraph_number, sentences in sentence_mapping.items():
        combined_sentence = " ".join(sentences)
        print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
        prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
        prompts.append((paragraph_number, prompt))
        print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")

    with Pool() as pool:
        tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
        print("Tasks created for image generation.")
        responses = pool.starmap(generate_image, tasks)
        print("Responses received from image generation tasks.")

    images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
    print(f"Images generated: {images}")
    return images

def process_prompt(sentence_mapping, character_dict, selected_style):
    print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
    try:
        loop = asyncio.get_running_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    print("Event loop created.")

    cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
    print(f"process_prompt completed with return value: {cmpt_return}")
    return cmpt_return

gradio_interface = gr.Interface(
    fn=process_prompt,
    inputs=[
        gr.JSON(label="Sentence Mapping"),
        gr.JSON(label="Character Dict"),
        gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
    ],
    outputs="json"
)

if __name__ == "__main__":
    print("Launching Gradio interface...")
    gradio_interface.launch()
    print("Gradio interface launched.")