Spaces:
Runtime error
Runtime error
File size: 4,134 Bytes
fdb39f4 67a7670 886af50 965be1d e6cfbd7 965be1d 221d07a 3d55353 5f0d37b 57dbbfb 965be1d 886af50 5b89128 221d07a 0348b75 66d0ca2 965be1d 63884a4 755f6de 57dbbfb 965be1d 5f0d37b 965be1d 63884a4 965be1d 755f6de c6798f9 63884a4 965be1d 5f0d37b 965be1d 63884a4 965be1d 63884a4 697c7eb c6798f9 697c7eb 755f6de 697c7eb 965be1d 697c7eb 755f6de 697c7eb 965be1d 57dbbfb 63884a4 57dbbfb 63884a4 66d0ca2 aa43ea6 57dbbfb 63884a4 57dbbfb 63884a4 57dbbfb aa43ea6 66d0ca2 aa43ea6 63884a4 57dbbfb aa43ea6 63884a4 697c7eb 755f6de 697c7eb 5f0d37b 697c7eb 755f6de 697c7eb 965be1d 67a7670 63884a4 66d0ca2 aa43ea6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
import json
import requests
import threading
import torch
import librosa
from flask import Flask, request, jsonify
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# GLOBAL concurrency counter & lock
concurrent_requests = 0
concurrent_requests_lock = threading.Lock()
app = Flask(__name__)
model_id = "ivrit-ai/whisper-large-v3-turbo"
processor = WhisperProcessor.from_pretrained(model_id)
model = WhisperForConditionalGeneration.from_pretrained(model_id)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
WEBHOOK_URL = "https://hook.eu1.make.com/86zogci73u394k2uqpulp5yjjwgm8b9x"
def transcribe_in_background(audio_url, file_id, company, user, file_name):
global concurrent_requests
try:
# Download audio
r = requests.get(audio_url)
audio_path = "/tmp/temp_audio.wav"
with open(audio_path, "wb") as f:
f.write(r.content)
# Load audio & limit to 1 hour
waveform, sr = librosa.load(audio_path, sr=16000)
max_sec = 3600
waveform = waveform[: sr * max_sec]
call_duration = int(len(waveform) / sr)
# Transcribe in 25-second chunks
chunk_sec = 25
chunk_size = sr * chunk_sec
chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
partial_text = ""
for chunk in chunks:
inputs = processor(chunk, sampling_rate=sr, return_tensors="pt", padding=True)
input_features = inputs.input_features.to(device)
with torch.no_grad():
predicted_ids = model.generate(
input_features,
forced_decoder_ids=forced_decoder_ids
)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
partial_text += transcription + "\n"
# Send result to webhook
payload = {
"Transcription": partial_text.strip(),
"callDuration": call_duration,
"fileId": file_id,
"company": company,
"user": user,
"fileName": file_name
}
requests.post(WEBHOOK_URL, json=payload)
except Exception as e:
error_payload = {
"error": str(e),
"fileId": file_id,
"company": company,
"user": user,
"fileName": file_name
}
requests.post(WEBHOOK_URL, json=error_payload)
finally:
# Decrement concurrency count
with concurrent_requests_lock:
concurrent_requests -= 1
@app.route("/transcribe", methods=["POST"])
def transcribe_endpoint():
global concurrent_requests
# We only allow ONE job at a time:
with concurrent_requests_lock:
if concurrent_requests >= 1:
# Return a 200 (OK) and a JSON message
return jsonify({
"message": "Server is already processing another job, please try again later."
}), 200
# If it's free, occupy the slot
concurrent_requests += 1
data = request.get_json()
audio_url = data.get("audio_url")
if not audio_url:
# If missing the audio_url, free the slot we claimed
with concurrent_requests_lock:
concurrent_requests -= 1
return jsonify({"error": "Missing 'audio_url' in request"}), 400
# Read headers
file_id = request.headers.get("fileId", "")
company = request.headers.get("company", "")
user = request.headers.get("user", "")
file_name = request.headers.get("fileName", "")
# Spawn a background thread
thread = threading.Thread(
target=transcribe_in_background,
args=(audio_url, file_id, company, user, file_name)
)
thread.start()
return jsonify({
"status": "Received. Transcription in progress.",
"note": "Results will be sent via webhook once done."
}), 202
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|