Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,111 +2,103 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import librosa
|
4 |
import numpy as np
|
5 |
-
from
|
6 |
-
|
7 |
-
#
|
8 |
-
# 1. Load
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
) from e
|
20 |
-
|
21 |
-
# Force GPU usage if available
|
22 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
-
model.to(device)
|
24 |
-
|
25 |
-
# ---------------------------
|
26 |
-
# 2. Global Stop Flag
|
27 |
-
# ---------------------------
|
28 |
stop_processing = False
|
29 |
|
30 |
def stop():
|
31 |
-
"""
|
32 |
-
Callback to set a global stop flag, allowing the user to interrupt
|
33 |
-
transcription mid-way through processing.
|
34 |
-
"""
|
35 |
global stop_processing
|
36 |
stop_processing = True
|
37 |
|
38 |
-
|
39 |
-
# -------------------------------------------
|
40 |
# 3. Transcription Function (with Chunking)
|
41 |
-
#
|
42 |
-
def transcribe(
|
43 |
"""
|
44 |
-
|
45 |
-
Splits
|
46 |
"""
|
47 |
global stop_processing
|
48 |
-
stop_processing = False # Reset at start
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
#
|
51 |
-
waveform, sr = librosa.load(audio, sr=16000)
|
52 |
max_audio_length = 60 * 60 # 60 minutes in seconds
|
53 |
if len(waveform) > sr * max_audio_length:
|
54 |
waveform = waveform[: sr * max_audio_length]
|
55 |
|
56 |
-
#
|
57 |
-
chunk_duration = 2 * 60 # 2 minutes
|
58 |
chunks = []
|
59 |
-
for
|
60 |
if stop_processing:
|
61 |
return "⚠️ Transcription Stopped by User ⚠️"
|
62 |
|
63 |
-
chunk = waveform[
|
64 |
-
#
|
65 |
if len(chunk) < sr * 2:
|
66 |
continue
|
67 |
chunks.append(chunk)
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
for chunk in chunks:
|
72 |
if stop_processing:
|
73 |
return "⚠️ Transcription Stopped by User ⚠️"
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
do_sample=False, # Stable transcription (disable random sampling)
|
83 |
-
)
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
|
|
|
|
|
|
|
92 |
|
93 |
-
#
|
94 |
# 4. Build Gradio Interface
|
95 |
-
#
|
96 |
-
with gr.Blocks() as
|
97 |
gr.Markdown("## Hebrew Speech-to-Text (Faster Whisper)")
|
98 |
|
99 |
-
# Inputs/Outputs
|
100 |
audio_input = gr.Audio(type="filepath", label="Upload Hebrew Audio")
|
101 |
-
|
102 |
|
103 |
-
# Buttons
|
104 |
start_btn = gr.Button("Start Transcription")
|
105 |
stop_btn = gr.Button("Stop Processing", variant="stop")
|
106 |
|
107 |
-
#
|
108 |
-
start_btn.click(transcribe, inputs=audio_input, outputs=
|
109 |
stop_btn.click(stop)
|
110 |
|
111 |
-
# Launch the Gradio
|
112 |
-
|
|
|
2 |
import torch
|
3 |
import librosa
|
4 |
import numpy as np
|
5 |
+
from faster_whisper import WhisperModel
|
6 |
+
|
7 |
+
# -----------------------------
|
8 |
+
# 1. Load Faster Whisper Model
|
9 |
+
# -----------------------------
|
10 |
+
# * Use device="cuda" if a GPU is available, otherwise "cpu".
|
11 |
+
model = WhisperModel(
|
12 |
+
"ivrit-ai/whisper-large-v3-turbo-ct2",
|
13 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
)
|
15 |
+
|
16 |
+
# --------------------------------
|
17 |
+
# 2. Global Stop Flag for Gradio
|
18 |
+
# --------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
stop_processing = False
|
20 |
|
21 |
def stop():
|
22 |
+
"""Set a global stop flag, letting the user interrupt transcription."""
|
|
|
|
|
|
|
23 |
global stop_processing
|
24 |
stop_processing = True
|
25 |
|
26 |
+
# --------------------------------------------
|
|
|
27 |
# 3. Transcription Function (with Chunking)
|
28 |
+
# --------------------------------------------
|
29 |
+
def transcribe(audio_file):
|
30 |
"""
|
31 |
+
Transcribe Hebrew speech from an uploaded audio file using Faster Whisper.
|
32 |
+
Splits audio into ~2-minute chunks to handle very large files (up to 60 min).
|
33 |
"""
|
34 |
global stop_processing
|
35 |
+
stop_processing = False # Reset at the start of a new transcription
|
36 |
+
|
37 |
+
# A) Load Audio (Librosa) -> 16kHz
|
38 |
+
sample_rate = 16000
|
39 |
+
waveform, sr = librosa.load(audio_file, sr=sample_rate)
|
40 |
|
41 |
+
# Trim audio if it exceeds 60 minutes
|
|
|
42 |
max_audio_length = 60 * 60 # 60 minutes in seconds
|
43 |
if len(waveform) > sr * max_audio_length:
|
44 |
waveform = waveform[: sr * max_audio_length]
|
45 |
|
46 |
+
# B) Split into ~2-min chunks
|
47 |
+
chunk_duration = 2 * 60 # 2 minutes = 120 seconds
|
48 |
chunks = []
|
49 |
+
for start_idx in range(0, len(waveform), sr * chunk_duration):
|
50 |
if stop_processing:
|
51 |
return "⚠️ Transcription Stopped by User ⚠️"
|
52 |
|
53 |
+
chunk = waveform[start_idx : start_idx + sr * chunk_duration]
|
54 |
+
# Skip very short chunks (<2s) if you want
|
55 |
if len(chunk) < sr * 2:
|
56 |
continue
|
57 |
chunks.append(chunk)
|
58 |
|
59 |
+
# C) Transcribe Each Chunk with Faster Whisper
|
60 |
+
all_texts = []
|
61 |
for chunk in chunks:
|
62 |
if stop_processing:
|
63 |
return "⚠️ Transcription Stopped by User ⚠️"
|
64 |
|
65 |
+
# Faster Whisper can accept a numpy array directly (float32)
|
66 |
+
# Provide `sample_rate` and `language="he"` for Hebrew
|
67 |
+
segment_generator, info = model.transcribe(
|
68 |
+
chunk.astype(np.float32),
|
69 |
+
language="he",
|
70 |
+
sample_rate=sample_rate
|
71 |
+
)
|
|
|
|
|
72 |
|
73 |
+
# Gather text from each segment
|
74 |
+
chunk_text = []
|
75 |
+
for seg in segment_generator:
|
76 |
+
if stop_processing:
|
77 |
+
return "⚠️ Transcription Stopped by User ⚠️"
|
78 |
+
chunk_text.append(seg.text)
|
79 |
|
80 |
+
# Combine chunk texts
|
81 |
+
all_texts.append(" ".join(chunk_text))
|
82 |
|
83 |
+
# Join all chunk transcriptions into one final string
|
84 |
+
full_text = " ".join(all_texts)
|
85 |
+
return full_text
|
86 |
|
87 |
+
# ---------------------------
|
88 |
# 4. Build Gradio Interface
|
89 |
+
# ---------------------------
|
90 |
+
with gr.Blocks() as demo:
|
91 |
gr.Markdown("## Hebrew Speech-to-Text (Faster Whisper)")
|
92 |
|
|
|
93 |
audio_input = gr.Audio(type="filepath", label="Upload Hebrew Audio")
|
94 |
+
transcription_output = gr.Textbox(label="Transcription Output")
|
95 |
|
|
|
96 |
start_btn = gr.Button("Start Transcription")
|
97 |
stop_btn = gr.Button("Stop Processing", variant="stop")
|
98 |
|
99 |
+
# Link buttons to functions
|
100 |
+
start_btn.click(transcribe, inputs=audio_input, outputs=transcription_output)
|
101 |
stop_btn.click(stop)
|
102 |
|
103 |
+
# Launch the Gradio app
|
104 |
+
demo.launch()
|