Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,85 +4,109 @@ import librosa
|
|
4 |
import numpy as np
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
model.to(device)
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
# Function to stop transcription
|
20 |
def stop():
|
|
|
|
|
|
|
|
|
21 |
global stop_processing
|
22 |
-
stop_processing = True
|
|
|
23 |
|
24 |
-
#
|
|
|
|
|
25 |
def transcribe(audio):
|
|
|
|
|
|
|
|
|
26 |
global stop_processing
|
27 |
-
stop_processing = False # Reset
|
28 |
|
29 |
-
#
|
30 |
waveform, sr = librosa.load(audio, sr=16000)
|
31 |
-
|
32 |
-
# Set chunk size (~2 min per chunk)
|
33 |
-
chunk_duration = 2 * 60 # 2 minutes (120 seconds)
|
34 |
-
max_audio_length = 60 * 60 # 60 minutes
|
35 |
-
chunks = []
|
36 |
-
|
37 |
-
# Ensure audio doesn't exceed 60 minutes
|
38 |
if len(waveform) > sr * max_audio_length:
|
39 |
waveform = waveform[: sr * max_audio_length]
|
40 |
|
41 |
-
# Split
|
|
|
|
|
42 |
for i in range(0, len(waveform), sr * chunk_duration):
|
43 |
-
if stop_processing:
|
44 |
return "⚠️ Transcription Stopped by User ⚠️"
|
45 |
|
46 |
chunk = waveform[i : i + sr * chunk_duration]
|
47 |
-
|
|
|
48 |
continue
|
49 |
chunks.append(chunk)
|
50 |
|
51 |
-
# Process
|
52 |
transcriptions = []
|
53 |
for chunk in chunks:
|
54 |
-
if stop_processing:
|
55 |
return "⚠️ Transcription Stopped by User ⚠️"
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
with torch.no_grad():
|
60 |
predicted_ids = model.generate(
|
61 |
-
|
62 |
-
max_new_tokens=444,
|
63 |
-
do_sample=False
|
64 |
)
|
65 |
|
66 |
-
# Decode
|
67 |
-
|
68 |
-
transcriptions.append(
|
|
|
|
|
|
|
69 |
|
70 |
-
# Join all chunk transcriptions into one
|
71 |
-
full_transcription = " ".join(transcriptions)
|
72 |
-
return full_transcription
|
73 |
|
74 |
-
#
|
|
|
|
|
75 |
with gr.Blocks() as iface:
|
76 |
-
gr.Markdown("
|
77 |
|
|
|
78 |
audio_input = gr.Audio(type="filepath", label="Upload Hebrew Audio")
|
79 |
output_text = gr.Textbox(label="Transcription Output")
|
80 |
|
|
|
81 |
start_btn = gr.Button("Start Transcription")
|
82 |
stop_btn = gr.Button("Stop Processing", variant="stop")
|
83 |
|
|
|
84 |
start_btn.click(transcribe, inputs=audio_input, outputs=output_text)
|
85 |
-
stop_btn.click(stop)
|
86 |
|
87 |
-
# Launch the Gradio
|
88 |
iface.launch()
|
|
|
4 |
import numpy as np
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
|
7 |
+
# ------------------------------
|
8 |
+
# 1. Load the Model & Processor
|
9 |
+
# ------------------------------
|
10 |
+
model_id = "ivrit-ai/faster-whisper-v2-d4" # Replace with a verified HF model if needed, e.g. "openai/whisper-large-v2"
|
11 |
+
|
12 |
+
try:
|
13 |
+
processor = WhisperProcessor.from_pretrained(model_id)
|
14 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
15 |
+
except OSError as e:
|
16 |
+
raise ValueError(
|
17 |
+
f"Unable to load model or tokenizer from '{model_id}'. "
|
18 |
+
"Double-check that the model ID is valid on Hugging Face Hub."
|
19 |
+
) from e
|
20 |
+
|
21 |
+
# Force GPU usage if available
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
model.to(device)
|
24 |
|
25 |
+
# ---------------------------
|
26 |
+
# 2. Global Stop Flag
|
27 |
+
# ---------------------------
|
28 |
+
stop_processing = False
|
29 |
|
|
|
30 |
def stop():
|
31 |
+
"""
|
32 |
+
Callback to set a global stop flag, allowing the user to interrupt
|
33 |
+
transcription mid-way through processing.
|
34 |
+
"""
|
35 |
global stop_processing
|
36 |
+
stop_processing = True
|
37 |
+
|
38 |
|
39 |
+
# -------------------------------------------
|
40 |
+
# 3. Transcription Function (with Chunking)
|
41 |
+
# -------------------------------------------
|
42 |
def transcribe(audio):
|
43 |
+
"""
|
44 |
+
Transcribes Hebrew speech from an uploaded audio file.
|
45 |
+
Splits long audio into 2-minute chunks to handle large files (up to 60 min).
|
46 |
+
"""
|
47 |
global stop_processing
|
48 |
+
stop_processing = False # Reset at start
|
49 |
|
50 |
+
# --- A) Load Audio & Limit to 60 Minutes
|
51 |
waveform, sr = librosa.load(audio, sr=16000)
|
52 |
+
max_audio_length = 60 * 60 # 60 minutes in seconds
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if len(waveform) > sr * max_audio_length:
|
54 |
waveform = waveform[: sr * max_audio_length]
|
55 |
|
56 |
+
# --- B) Split Audio into ~2-minute Chunks
|
57 |
+
chunk_duration = 2 * 60 # 2 minutes (120 seconds)
|
58 |
+
chunks = []
|
59 |
for i in range(0, len(waveform), sr * chunk_duration):
|
60 |
+
if stop_processing:
|
61 |
return "⚠️ Transcription Stopped by User ⚠️"
|
62 |
|
63 |
chunk = waveform[i : i + sr * chunk_duration]
|
64 |
+
# Optional: skip very short chunks (<2 seconds)
|
65 |
+
if len(chunk) < sr * 2:
|
66 |
continue
|
67 |
chunks.append(chunk)
|
68 |
|
69 |
+
# --- C) Process Each Chunk with Whisper
|
70 |
transcriptions = []
|
71 |
for chunk in chunks:
|
72 |
+
if stop_processing:
|
73 |
return "⚠️ Transcription Stopped by User ⚠️"
|
74 |
|
75 |
+
# Convert the chunk to Whisper input features
|
76 |
+
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt", language="he").input_features.to(device)
|
77 |
|
78 |
with torch.no_grad():
|
79 |
predicted_ids = model.generate(
|
80 |
+
inputs,
|
81 |
+
max_new_tokens=444, # Prevent exceeding model’s token limit
|
82 |
+
do_sample=False, # Stable transcription (disable random sampling)
|
83 |
)
|
84 |
|
85 |
+
# Decode tokens to text
|
86 |
+
text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
87 |
+
transcriptions.append(text)
|
88 |
+
|
89 |
+
# --- D) Combine All Chunk Transcriptions
|
90 |
+
return " ".join(transcriptions)
|
91 |
|
|
|
|
|
|
|
92 |
|
93 |
+
# ------------------------
|
94 |
+
# 4. Build Gradio Interface
|
95 |
+
# ------------------------
|
96 |
with gr.Blocks() as iface:
|
97 |
+
gr.Markdown("## Hebrew Speech-to-Text (Faster Whisper)")
|
98 |
|
99 |
+
# Inputs/Outputs
|
100 |
audio_input = gr.Audio(type="filepath", label="Upload Hebrew Audio")
|
101 |
output_text = gr.Textbox(label="Transcription Output")
|
102 |
|
103 |
+
# Buttons
|
104 |
start_btn = gr.Button("Start Transcription")
|
105 |
stop_btn = gr.Button("Stop Processing", variant="stop")
|
106 |
|
107 |
+
# Click Actions
|
108 |
start_btn.click(transcribe, inputs=audio_input, outputs=output_text)
|
109 |
+
stop_btn.click(stop)
|
110 |
|
111 |
+
# Launch the Gradio App
|
112 |
iface.launch()
|