Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
5 |
+
|
6 |
+
# Load the Whisper model
|
7 |
+
model_id = "ivrit-ai/whisper-large-v3-turbo"
|
8 |
+
processor = WhisperProcessor.from_pretrained(model_id)
|
9 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
10 |
+
|
11 |
+
# Move model to GPU if available
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
# Function to transcribe Hebrew audio
|
16 |
+
def transcribe(audio):
|
17 |
+
waveform, sr = librosa.load(audio, sr=16000) # Convert to 16kHz
|
18 |
+
input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
predicted_ids = model.generate(input_features)
|
22 |
+
|
23 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
24 |
+
return transcription
|
25 |
+
|
26 |
+
# Create the Gradio Interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=transcribe,
|
29 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
30 |
+
outputs="text",
|
31 |
+
title="Hebrew Speech-to-Text (Whisper)",
|
32 |
+
description="Upload a Hebrew audio file and receive a transcription.",
|
33 |
+
)
|
34 |
+
|
35 |
+
iface.launch()
|