Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from flask import Flask, request, jsonify
|
|
9 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
10 |
|
11 |
###############################################################################
|
12 |
-
# 1) Configure environment
|
13 |
###############################################################################
|
14 |
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
15 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
@@ -18,7 +18,6 @@ os.environ["XDG_CACHE_HOME"] = "/tmp"
|
|
18 |
|
19 |
app = Flask(__name__)
|
20 |
|
21 |
-
# Example: your custom Hebrew model
|
22 |
model_id = "ivrit-ai/whisper-large-v3-turbo"
|
23 |
processor = WhisperProcessor.from_pretrained(model_id)
|
24 |
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
@@ -35,26 +34,26 @@ WEBHOOK_URL = "https://hook.eu1.make.com/86zogci73u394k2uqpulp5yjjwgm8b9x"
|
|
35 |
###############################################################################
|
36 |
# 2) Background transcription function
|
37 |
###############################################################################
|
38 |
-
def transcribe_in_background(audio_url):
|
39 |
"""
|
40 |
Called by a background thread. Downloads & transcribes audio,
|
41 |
then sends results to your Make.com webhook.
|
42 |
"""
|
43 |
try:
|
44 |
-
# Download audio
|
45 |
r = requests.get(audio_url)
|
46 |
audio_path = "/tmp/temp_audio.wav"
|
47 |
with open(audio_path, "wb") as f:
|
48 |
f.write(r.content)
|
49 |
|
50 |
-
# Load with librosa
|
51 |
waveform, sr = librosa.load(audio_path, sr=16000)
|
52 |
|
53 |
-
# Optional limit ~1 hour
|
54 |
max_sec = 3600
|
55 |
waveform = waveform[: sr * max_sec]
|
56 |
|
57 |
-
# Split audio into 25-second chunks
|
58 |
chunk_sec = 25
|
59 |
chunk_size = sr * chunk_sec
|
60 |
chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
@@ -73,39 +72,56 @@ def transcribe_in_background(audio_url):
|
|
73 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
74 |
partial_text += transcription + "\n"
|
75 |
|
76 |
-
# Post final transcription back to Make.com
|
77 |
-
payload = {
|
|
|
|
|
|
|
|
|
|
|
78 |
requests.post(WEBHOOK_URL, json=payload)
|
79 |
|
80 |
except Exception as e:
|
81 |
# In case of errors, notify the webhook
|
82 |
-
error_payload = {
|
|
|
|
|
|
|
|
|
|
|
83 |
requests.post(WEBHOOK_URL, json=error_payload)
|
84 |
|
85 |
-
|
86 |
###############################################################################
|
87 |
-
# 3) Flask route: returns immediately,
|
88 |
###############################################################################
|
89 |
@app.route("/transcribe", methods=["POST"])
|
90 |
def transcribe_endpoint():
|
|
|
91 |
data = request.get_json()
|
92 |
audio_url = data.get("audio_url")
|
93 |
if not audio_url:
|
94 |
return jsonify({"error": "Missing 'audio_url' in request"}), 400
|
95 |
|
96 |
-
#
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
thread.start()
|
99 |
|
100 |
-
# Immediately return a JSON response
|
101 |
return jsonify({
|
102 |
"status": "Received. Transcription in progress.",
|
103 |
"note": "Results will be sent via webhook once done."
|
104 |
}), 202
|
105 |
|
106 |
-
|
107 |
###############################################################################
|
108 |
-
# 4) Run app if local
|
109 |
###############################################################################
|
110 |
if __name__ == "__main__":
|
111 |
app.run(host="0.0.0.0", port=7860)
|
|
|
9 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
10 |
|
11 |
###############################################################################
|
12 |
+
# 1) Configure environment & set up model
|
13 |
###############################################################################
|
14 |
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
15 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
|
|
18 |
|
19 |
app = Flask(__name__)
|
20 |
|
|
|
21 |
model_id = "ivrit-ai/whisper-large-v3-turbo"
|
22 |
processor = WhisperProcessor.from_pretrained(model_id)
|
23 |
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
|
|
34 |
###############################################################################
|
35 |
# 2) Background transcription function
|
36 |
###############################################################################
|
37 |
+
def transcribe_in_background(audio_url, file_id, company, user):
|
38 |
"""
|
39 |
Called by a background thread. Downloads & transcribes audio,
|
40 |
then sends results to your Make.com webhook.
|
41 |
"""
|
42 |
try:
|
43 |
+
# 1) Download the audio
|
44 |
r = requests.get(audio_url)
|
45 |
audio_path = "/tmp/temp_audio.wav"
|
46 |
with open(audio_path, "wb") as f:
|
47 |
f.write(r.content)
|
48 |
|
49 |
+
# 2) Load with librosa
|
50 |
waveform, sr = librosa.load(audio_path, sr=16000)
|
51 |
|
52 |
+
# Optional: limit ~1 hour
|
53 |
max_sec = 3600
|
54 |
waveform = waveform[: sr * max_sec]
|
55 |
|
56 |
+
# 3) Split audio into 25-second chunks
|
57 |
chunk_sec = 25
|
58 |
chunk_size = sr * chunk_sec
|
59 |
chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
|
|
72 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
73 |
partial_text += transcription + "\n"
|
74 |
|
75 |
+
# 4) Post final transcription back to Make.com, including the extra fields
|
76 |
+
payload = {
|
77 |
+
"Transcription": partial_text.strip(),
|
78 |
+
"fileId": file_id,
|
79 |
+
"company": company,
|
80 |
+
"user": user
|
81 |
+
}
|
82 |
requests.post(WEBHOOK_URL, json=payload)
|
83 |
|
84 |
except Exception as e:
|
85 |
# In case of errors, notify the webhook
|
86 |
+
error_payload = {
|
87 |
+
"error": str(e),
|
88 |
+
"fileId": file_id,
|
89 |
+
"company": company,
|
90 |
+
"user": user
|
91 |
+
}
|
92 |
requests.post(WEBHOOK_URL, json=error_payload)
|
93 |
|
|
|
94 |
###############################################################################
|
95 |
+
# 3) Flask route: returns immediately, transcribes in a separate thread
|
96 |
###############################################################################
|
97 |
@app.route("/transcribe", methods=["POST"])
|
98 |
def transcribe_endpoint():
|
99 |
+
# 1) Get JSON data from request
|
100 |
data = request.get_json()
|
101 |
audio_url = data.get("audio_url")
|
102 |
if not audio_url:
|
103 |
return jsonify({"error": "Missing 'audio_url' in request"}), 400
|
104 |
|
105 |
+
# 2) Read custom headers (fileId, company, user)
|
106 |
+
file_id = request.headers.get("fileId", "")
|
107 |
+
company = request.headers.get("company", "")
|
108 |
+
user = request.headers.get("user", "")
|
109 |
+
|
110 |
+
# 3) Spawn a thread to handle transcription
|
111 |
+
thread = threading.Thread(
|
112 |
+
target=transcribe_in_background,
|
113 |
+
args=(audio_url, file_id, company, user)
|
114 |
+
)
|
115 |
thread.start()
|
116 |
|
117 |
+
# 4) Immediately return a JSON response
|
118 |
return jsonify({
|
119 |
"status": "Received. Transcription in progress.",
|
120 |
"note": "Results will be sent via webhook once done."
|
121 |
}), 202
|
122 |
|
|
|
123 |
###############################################################################
|
124 |
+
# 4) Run app if local; on HF Spaces, gunicorn is used
|
125 |
###############################################################################
|
126 |
if __name__ == "__main__":
|
127 |
app.run(host="0.0.0.0", port=7860)
|