EladSpamson commited on
Commit
755f6de
·
verified ·
1 Parent(s): f4cbc59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -26
app.py CHANGED
@@ -4,6 +4,7 @@ import requests
4
  import threading
5
  import torch
6
  import librosa
 
7
 
8
  from flask import Flask, request, jsonify
9
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
@@ -25,38 +26,31 @@ model = WhisperForConditionalGeneration.from_pretrained(model_id)
25
  device = "cuda" if torch.cuda.is_available() else "cpu"
26
  model.to(device)
27
 
28
- # Force Hebrew transcription (skip auto-detect)
29
  forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
30
 
31
- # Where we send the final transcription
32
  WEBHOOK_URL = "https://hook.eu1.make.com/86zogci73u394k2uqpulp5yjjwgm8b9x"
33
 
34
  ###############################################################################
35
  # 2) Background transcription function
36
  ###############################################################################
37
- def transcribe_in_background(audio_url, file_id, company, user):
38
- """
39
- Called by a background thread. Downloads & transcribes audio,
40
- then sends results to your Make.com webhook.
41
- """
42
  try:
43
- # 1) Download the audio
44
  r = requests.get(audio_url)
45
  audio_path = "/tmp/temp_audio.wav"
46
  with open(audio_path, "wb") as f:
47
  f.write(r.content)
48
 
49
- # 2) Load with librosa
50
  waveform, sr = librosa.load(audio_path, sr=16000)
51
-
52
- # Optional: limit to ~1 hour
53
  max_sec = 3600
54
  waveform = waveform[: sr * max_sec]
55
 
56
- # Calculate total duration actually analyzed
57
- call_duration = int(len(waveform) / sr) # Rounded to nearest second
58
 
59
- # 3) Split audio into 25-second chunks
60
  chunk_sec = 25
61
  chunk_size = sr * chunk_sec
62
  chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
@@ -75,58 +69,64 @@ def transcribe_in_background(audio_url, file_id, company, user):
75
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
76
  partial_text += transcription + "\n"
77
 
78
- # 4) Post final transcription back to Make.com, including extra fields
79
  payload = {
80
  "Transcription": partial_text.strip(),
81
  "callDuration": call_duration,
82
  "fileId": file_id,
83
  "company": company,
84
- "user": user
 
85
  }
86
  requests.post(WEBHOOK_URL, json=payload)
87
 
88
  except Exception as e:
89
- # In case of errors, notify the webhook
90
  error_payload = {
91
  "error": str(e),
92
  "fileId": file_id,
93
  "company": company,
94
- "user": user
95
- # You could optionally include "callDuration" here if relevant
96
  }
97
  requests.post(WEBHOOK_URL, json=error_payload)
98
 
99
  ###############################################################################
100
- # 3) Flask route: returns immediately, transcribes in a separate thread
101
  ###############################################################################
102
  @app.route("/transcribe", methods=["POST"])
103
  def transcribe_endpoint():
104
- # 1) Get JSON data from request
 
 
 
 
 
105
  data = request.get_json()
106
  audio_url = data.get("audio_url")
107
  if not audio_url:
108
  return jsonify({"error": "Missing 'audio_url' in request"}), 400
109
 
110
- # 2) Read custom headers (fileId, company, user)
111
  file_id = request.headers.get("fileId", "")
112
  company = request.headers.get("company", "")
113
  user = request.headers.get("user", "")
 
114
 
115
- # 3) Spawn a thread to handle transcription
116
  thread = threading.Thread(
117
  target=transcribe_in_background,
118
- args=(audio_url, file_id, company, user)
119
  )
120
  thread.start()
121
 
122
- # 4) Immediately return a JSON response
123
  return jsonify({
124
  "status": "Received. Transcription in progress.",
125
  "note": "Results will be sent via webhook once done."
126
  }), 202
127
 
128
  ###############################################################################
129
- # 4) Run app if local; on HF Spaces, gunicorn is used
130
  ###############################################################################
131
  if __name__ == "__main__":
132
  app.run(host="0.0.0.0", port=7860)
 
4
  import threading
5
  import torch
6
  import librosa
7
+ import psutil
8
 
9
  from flask import Flask, request, jsonify
10
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
 
26
  device = "cuda" if torch.cuda.is_available() else "cpu"
27
  model.to(device)
28
 
29
+ # Force Hebrew transcription
30
  forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
31
 
 
32
  WEBHOOK_URL = "https://hook.eu1.make.com/86zogci73u394k2uqpulp5yjjwgm8b9x"
33
 
34
  ###############################################################################
35
  # 2) Background transcription function
36
  ###############################################################################
37
+ def transcribe_in_background(audio_url, file_id, company, user, file_name):
 
 
 
 
38
  try:
39
+ # Download audio
40
  r = requests.get(audio_url)
41
  audio_path = "/tmp/temp_audio.wav"
42
  with open(audio_path, "wb") as f:
43
  f.write(r.content)
44
 
45
+ # Load with librosa, limit to 1 hour
46
  waveform, sr = librosa.load(audio_path, sr=16000)
 
 
47
  max_sec = 3600
48
  waveform = waveform[: sr * max_sec]
49
 
50
+ # Calculate callDuration
51
+ call_duration = int(len(waveform) / sr)
52
 
53
+ # Split audio into 25-second chunks
54
  chunk_sec = 25
55
  chunk_size = sr * chunk_sec
56
  chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
 
69
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
70
  partial_text += transcription + "\n"
71
 
72
+ # Post final transcription back to Make.com
73
  payload = {
74
  "Transcription": partial_text.strip(),
75
  "callDuration": call_duration,
76
  "fileId": file_id,
77
  "company": company,
78
+ "user": user,
79
+ "fileName": file_name
80
  }
81
  requests.post(WEBHOOK_URL, json=payload)
82
 
83
  except Exception as e:
 
84
  error_payload = {
85
  "error": str(e),
86
  "fileId": file_id,
87
  "company": company,
88
+ "user": user,
89
+ "fileName": file_name
90
  }
91
  requests.post(WEBHOOK_URL, json=error_payload)
92
 
93
  ###############################################################################
94
+ # 3) Flask route: CPU check and transcription
95
  ###############################################################################
96
  @app.route("/transcribe", methods=["POST"])
97
  def transcribe_endpoint():
98
+ # 1) Check CPU usage
99
+ cpu_usage = psutil.cpu_percent(interval=0.1) # measure CPU usage over 0.1s
100
+ if cpu_usage > 1.0:
101
+ return jsonify({"error": "CPU is busy", "cpuUsage": cpu_usage}), 503
102
+
103
+ # 2) Get JSON data
104
  data = request.get_json()
105
  audio_url = data.get("audio_url")
106
  if not audio_url:
107
  return jsonify({"error": "Missing 'audio_url' in request"}), 400
108
 
109
+ # 3) Read headers
110
  file_id = request.headers.get("fileId", "")
111
  company = request.headers.get("company", "")
112
  user = request.headers.get("user", "")
113
+ file_name = request.headers.get("fileName", "")
114
 
115
+ # 4) Spawn a background thread
116
  thread = threading.Thread(
117
  target=transcribe_in_background,
118
+ args=(audio_url, file_id, company, user, file_name)
119
  )
120
  thread.start()
121
 
122
+ # 5) Return immediate response
123
  return jsonify({
124
  "status": "Received. Transcription in progress.",
125
  "note": "Results will be sent via webhook once done."
126
  }), 202
127
 
128
  ###############################################################################
129
+ # 4) Run app locally; HF Spaces uses gunicorn
130
  ###############################################################################
131
  if __name__ == "__main__":
132
  app.run(host="0.0.0.0", port=7860)